

 Συνέδρια της Ελληνικής Επιστημονικής Ένωσης Τεχνολογιών Πληροφορίας
& Επικοινωνιών στην Εκπαίδευση

 Τόμ. 1 (2005)

 3ο Πανελλήνιο Συνέδριο «Διδακτική της Πληροφορικής»

 Οι Δυσκολίες των Αρχάριων Προγραμματιστών

 Βασίλειος Εφόπουλος, Γεώργιος Ευαγγελίδης,
Βασίλειος Δαγδιλέλης, Αλέξανδρος Κλεφτοδήμος

Βιβλιογραφική αναφορά:

Εφόπουλος Β., Ευαγγελίδης Γ., Δαγδιλέλης Β., & Κλεφτοδήμος Α. (2026). Οι Δυσκολίες των Αρχάριων
Προγραμματιστών. Συνέδρια της Ελληνικής Επιστημονικής Ένωσης Τεχνολογιών Πληροφορίας & Επικοινωνιών
στην Εκπαίδευση, 1, 240–251. ανακτήθηκε από
https://eproceedings.epublishing.ekt.gr/index.php/cetpe/article/view/8714

Powered by TCPDF (www.tcpdf.org)

https://epublishing.ekt.gr | e-Εκδότης: EKT | Πρόσβαση: 16/01/2026 11:37:09

Οι ∆υσκολίες των Αρχάριων Προγραµµατιστών

Βασίλειος Εφόπουλος1, Γεώργιος Ευαγγελίδης1
Βασίλειος ∆αγδιλέλης 2, Αλέξανδρος Κλεφτοδήµος3

1 Τµήµα Εφαρµοσµένης Πληροφορικής, Πανεπιστήµιο Μακεδονίας
2 Τµήµα Εκπαιδευτικής & Κοινωνικής Πολιτικής, Πανεπιστήµιο Μακεδονίας

3 1ο ΤΕΕ Άργους Ορεστικού
efop@uom.gr, gevan@uom.gr, dagdil@uom.gr, alexkleft@sch.gr

ΠΕΡΙΛΗΨΗ
Την τελευταία εικοσαετία έχουν γίνει, σε διεθνές επίπεδο, αρκετές έρευνες σχετικές µε τη
διδασκαλία και την εκµάθηση του προγραµµατισµού των ηλεκτρονικών υπολογιστών. Έχει
παρατηρηθεί ότι οι αρχάριοι προγραµµατιστές συναντούν αρκετές δυσκολίες στην
κατανόηση και εφαρµογή βασικών αρχών και κανόνων του προγραµµατισµού. Στη
παρούσα εργασία γίνεται µια προσπάθεια επισκόπησης των ερευνών που σχετίζονται µε τις
δυσκολίες που αντιµετωπίζουν οι αρχάριοι προγραµµατιστές στα πρώτα τους βήµατα, τα
λάθη που συχνά κάνουν και τα προβλήµατα κατανόησης που συναντούν στις βασικές
έννοιες και δοµές µιας γλώσσας προγραµµατισµού.

ΛΕΞΕΙΣ ΚΛΕΙ∆ΙΑ: ∆ιδασκαλία Προγραµµατισµού, Αρχάριοι, ∆οµές ∆εδοµένων

ΕΙΣΑΓΩΓΗ
Τα τελευταία χρόνια, είναι γενικώς αποδεκτό ότι η διδασκαλία και η εκµάθηση του

προγραµµατισµού χαρακτηρίζονται κατά κανόνα από ορισµένες "δυσκολίες", οι οποίες
εκδηλώνονται κυρίως κατά την κατασκευή ενός αλγορίθµου ή ενός προγράµµατος.
Oρισµένες δυσκολίες εκδηλώνονται και σε άλλες περιπτώσεις: όταν, για παράδειγµα, ο
προγραµµατιστής επιχειρεί να αιτιολογήσει ή να προβλέψει τη συµπεριφορά ενός
αλγορίθµου ή επιχειρεί να τον διορθώσει. Ορισµένες δυσκολίες µοιάζουν να είναι, κατά
κάποιο τρόπο, εγγενείς στον ίδιο τον προγραµµατισµό, µε την έννοια ότι συναντώνται
κατά τρόπο συστηµατικό, και είναι σχεδόν ανεξάρτητες από τη µέθοδο διδασκαλίας του
αντίστοιχου αντικειµένου. Eπίσης, πολλές απ’ αυτές παρουσιάζουν εξαιρετική
ανθεκτικότητα στο χρόνο και συναντώνται είτε σε µαθητές δηµοτικού είτε σε
σπουδαστές και φοιτητές (Pea 1986). Έτσι, οι έννοιες ή οι µέθοδοι αυτές αποτελούν
πηγή δυσκολιών για µακρό χρονικό διάστηµα κι επιπλέον εµφανίζονται κατά τρόπο
σχεδόν ανεξάρτητο από το κοινό (αν και βέβαια η υπέρβαση τους δεν γίνεται πάντοτε µε
την ίδια ταχύτητα). Ένα µέρος από σχετικά θέµατα προγραµµατισµού (όπως για
παράδειγµα η χρήση των βρόχων ή των αναδροµικών διαδικασιών από µη
πεπειραµένους προγραµµατιστές) έχει διερευνηθεί εκτεταµένα σε διεθνές επίπεδο.
Σήµερα γνωρίζουµε αρκετά καλά τα προβλήµατα που αντιµετωπίζουν οι αρχάριοι

Πρακτικά Εργασιών 3ου Πανελλήνιου Συνεδρίου «∆ιδακτική της Πληροφορικής»
Α. Τζιµογιάννης (επιµ.)
Πανεπιστήµιο Πελοποννήσου
Κόρινθος, 7-9 Οκτωβρίου 2005

3ο Πανελλήνιο Συνέδριο

προγραµµατιστές στους τοµείς αυτούς - και σε µερικές περιπτώσεις γνωρίζουµε
διδακτικές µεθόδους για την υπέρβαση τους. Υπάρχουν πολλές θεωρίες που προσπαθούν
να εξηγήσουν τι είναι αυτό που καθιστά την εκµάθηση του προγραµµατισµού τόσο
δύσκολη (Brusilovsky 1997, Du Boulay 1989, Brooks 1977). Θέµατα που έχουν
ερευνηθεί κυρίως αφορούν:
• προβλήµατα της διδασκαλίας και κατανόησης των µεταβλητών,
• προβλήµατα της διδασκαλίας και κατανόησης των επαναληπτικών δοµών (βρόχων),
• προβλήµατα της διδασκαλίας και κατανόησης των εντολών επιλογής σε
διαδικαστικές γλώσσες προγραµµατισµού (λ.χ. Pascal, σε αντιδιαστολή µε γλώσσες
συναρτησιακού προγραµµατισµού όπως η LISP ή λογικού προγραµµατισµού όπως
η Prolog κλπ),

• προβλήµατα της διδασκαλίας της αναδροµικότητας κυρίως σε γλώσσες στις οποίες
η αναδροµικότητα είναι κυρίαρχη (όπως η LOGO),

• ιδιαίτερα θέµατα όπως η µεταφορά γνώσεων από ένα προγραµµατιστικό
περιβάλλον σε άλλο ή η εισαγωγή στο λογικό και τον παράλληλο προγραµµατισµό.

Στις επόµενες ενότητες αναλύονται τα προβλήµατα διδασκαλίας και κατανόησης των
µεταβλητών, των επαναληπτικών δοµών, των δοµών επιλογής και της αναδροµής.

Η ∆ΥΣΚΟΛΙΑ ΕΚΜΑΘΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
Ο Du Boulay (1989) περιγράφει πέντε βασικές περιοχές όπου επικεντρώνεται η

δυσκολία της εκµάθησης του προγραµµατισµού.
Η πρώτη περιοχή (Orientation) καλείται «Προσανατολισµός: Τι είναι ο

προγραµµατισµός και σε τι µας είναι χρήσιµος». Οι µαθητές αρκετές φορές συναντούν
δυσκολίες µε τις διάφορες µορφές προγραµµατισµού. Σήµερα πολύ περισσότερο από
ποτέ άλλοτε, ο προγραµµατισµός καλύπτει µια ευρεία περιοχή των εφαρµογών
λογισµικού και δεν συναντάται αποκλειστικά στα περιβάλλοντα των κλασσικών
γλωσσών. Πολλά πακέτα λογισµικού ενσωµατώνουν δυνατότητες προγραµµατισµού
(συνήθως µέσω µακροεντολών), όπως λογιστικά φύλλα, επεξεργαστές κειµένου,
προγράµµατα δηµιουργίας γραφικών κ.ά. Αυτό το γεγονός έχει καταστήσει πλέον θολά
τα όρια µεταξύ του χρήστη εφαρµογών και του προγραµµατιστή.
Η δεύτερη περιοχή (Notional Machine) καλείται «Νοητή µηχανή – Πώς λειτουργεί ο

υπολογιστής». Ο µαθητής καλείται να «ελέγξει» µια εικονική µηχανή. Τι µορφή παίρνει
η εικονική µηχανή και ποιο είδος εντολών αναµένεται να καταλαβαίνει; Πώς γίνεται η
επικοινωνία, η έκδοση και η ανάγνωση των εντολών; Τα διανοητικά µοντέλα που
κατασκευάζουν οι µαθητές είναι κρίσιµα για την κατανόηση κάθε νέας έννοιας στην
οποία εισάγονται. Επιπλέον, η κατοχή ενός «φτωχού» διανοητικού µοντέλου µπορεί να
οδηγήσει τους µαθητές να αναπτύξουν φτωχές στρατηγικές εκµάθησης µε αποτέλεσµα
την απουσία κινήτρου, την έλλειψη ενδιαφέροντος, την αποθάρρυνση και απογοήτευση
(Kessler 1986).
Η τρίτη περιοχή δυσκολίας (Notation), που περιγράφει ο Du Boulay (1989),

αναφέρεται στα προβλήµατα που προκύπτουν από την ίδια τη γλώσσα
προγραµµατισµού, συµπεριλαµβανοµένων των συντακτικών και σηµασιολογικών

∆ιδακτική της Πληροφορικής

κανόνων. Αυτά περιλαµβάνουν σχεδιασµούς που οδηγούν εύκολα σε λάθη ή
περιλαµβάνουν δυσκολονόητες διαδικασίες.
Η τέταρτη περιοχή δυσκολίας (Structures) περιγράφει ένα απαραίτητο στοιχείο της

µετάβασης από τον αρχάριο στον έµπειρο προγραµµατιστή: την εκµάθηση και
πραγµατική κατάκτηση των δοµών, µε τέτοιο τρόπο, ώστε µελλοντικά να µπορούν να
ανακληθούν εύκολα και να ενσωµατωθούν σε µια λύση ενός προβλήµατος.
Παραδείγµατα τέτοιων δοµών είναι ο υπολογισµός ενός αθροίσµατος µε χρήση βρόχου,
ένας αλγόριθµος αναζήτησης, ένας αλγόριθµος ταξινόµησης, κώδικας για την
αντιµετάθεση τιµών κ.α. Οι έµπειροι προγραµµατιστές έχουν στο µυαλό τους έτοιµη τη
λύση προς χρήση ανά πάσα στιγµή για τέτοιες δοµές, αφού έχουν αντιµετωπίσει
ανάλογες καταστάσεις στο παρελθόν. Οι αρχάριοι, λόγω απειρίας, στερούνται τέτοιας
δυνατότητας µε αποτέλεσµα να βρίσκει εµπόδια η προσπάθειά τους να λύσουν ανάλογα
προβλήµατα.
Η πέµπτη περιοχή δυσκολίας (Pragmatics) παραµελείται συχνά στα µαθήµατα

προγραµµατισµού, παρά την προφανώς ιδιαίτερη σηµασία της. Έχει να κάνει µε τις
βοηθητικές δεξιότητες που είναι απαραίτητες για τον προγραµµατισµό και αφορούν την
ικανότητα προσαρµογής και ελέγχου ενός περιβάλλοντος στον υπολογιστή που θα
χρησιµοποιηθεί για τη συγγραφή κώδικα, τη µεταγλώττιση και αποσφαλµάτωση των
λαθών ενός προγράµµατος. Οι µαθητές ορισµένες φορές έχουν δυσκολία να
εγκλιµατισθούν στο περιβάλλον ανάπτυξης προγραµµάτων και να µάθουν να
χρησιµοποιούν τα διαθέσιµα εργαλεία, πριν ακόµα αρχίσουν να εξετάζουν την ίδια τη
γλώσσα προγραµµατισµού.

ΤΑ ΣΥΧΝΑ ΛΑΘΗ ΤΩΝ ΜΑΘΗΤΩΝ

O Du Boulay (1989) θεωρεί ότι τα λάθη των µαθητών µπορούν να ταξινοµηθούν στις
ακόλουθες τρεις κατηγορίες:
1. Κακή εφαρµογή της αναλογίας (Misapplication of analogy): η µεταβλητή

παροµοιάζεται ένα κουτί αποθήκευσης, οπότε αρκετοί µαθητές θεωρούν ότι θα
µπορούσε να αποθηκεύσει περισσότερες από µία τιµές.

2. Υπεργενίκευση (Overgeneralization): ό,τι λειτουργεί σωστά για έναν τύπο
αντικειµένου θα πρέπει να λειτουργεί σωστά και για κάποιον άλλο. Λ.χ. η χρήση
του χαρακτήρα “;” για το διαχωρισµό ορισµάτων σε ένα βρόχο FOR µπορεί να
οδηγήσει τους µαθητές να χρησιµοποιήσουν τον ίδιο χαρακτήρα (“;”) ως
διαχωριστικό των παραµέτρων στην κλήση µιας συνάρτησης.

3. Λάθος χειρισµός της πολυπλοκότητας και της αλληλεπίδρασης: κακή διαχείριση και
τοποθέτηση σε λάθος σηµείο των υποτµηµάτων ενός µεγάλου προγράµµατος.

Ο Du Boulay (1989) παρατηρεί επίσης ότι οι µαθητές συχνά θεωρούν ότι ο
υπολογιστής (ή το πρόγραµµα) θα επιστρέψει ως αποτέλεσµα αυτό που οι ίδιοι
πιστεύουν (και θέλουν) και όχι αυτό που προκύπτει από την εκτέλεση των εντολών του
προγράµµατος που έχουν γράψει. Ακόµη θεωρεί ότι η χρησιµοποίηση αγγλικών λέξεων
σε µια γλώσσα προγραµµατισµού µπορεί να παραπλανήσει τους µαθητές κάνοντας τους

3ο Πανελλήνιο Συνέδριο

να σκεφτούν ότι ο υπολογιστής διαθέτει (όπως ο άνθρωπος) την ικανότητα να
συµπεραίνει τι εννοεί κάποιος µε τα λεγόµενα του.
Ο Putnam (1986) µελέτησε τους µαθητές γυµνασίου που µαθαίνουν να

προγραµµατίζουν σε γλώσσα BASIC. ∆ιαπίστωσε ότι όταν η προγενέστερη γνώση
µεταφέρεται λανθασµένα στον προγραµµατισµό υπολογιστών, τότε ενδεχοµένως µπορεί
να προκαλέσει αρκετά λάθη. Οι σπουδαστές τείνουν να καλύψουν την ελλιπή γνώση
τους στη BASIC, υποθέτοντας ότι η µηχανή έχει ικανότητες φυσικής γλώσσας,
εξάγοντας (προφανώς λανθασµένα) συµπεράσµατα για τη χρήση των λέξεων κλειδιών
της γλώσσας σύµφωνα µε την αγγλική τους σηµασία.
Οι Bruckman & Edwards (1999) θεωρούν ότι τα λάθη που σχετίζονται µε τη φυσική

γλώσσα είναι πιθανό να εµφανιστούν ανεξάρτητα από το πόσο κοντά βρίσκεται η
γλώσσα προγραµµατισµού µε τη φυσική γλώσσα. Οι παραπάνω ερευνητές διαπίστωσαν
ότι τα λάθη που σχετίζονται µε τη φυσική γλώσσα, όταν χρησιµοποιείται γλώσσα
προγραµµατισµού που βρίσκεται πολύ κοντά στη φυσική γλώσσα, αποτελούν ένα µικρό
ποσοστό των συνολικών λαθών (10,6%) και από αυτά το 61,8% διορθώνεται από τους
µαθητές χωρίς εξωτερική βοήθεια. Καταλήγουν στο συµπέρασµα ότι τα λάθη που
σχετίζονται µε τη φυσική γλώσσα δεν αποτελούν ικανοποιητικό λόγο για να
αποφεύγεται η χρήση φυσικής γλώσσας στη σχεδίαση γλωσσών προγραµµατισµού.

O Du Boulay (1989) επίσης σηµειώνει ότι οι µαθητές αρκετές φορές αγνοούν ή είναι
απληροφόρητοι για την κατάλληλη αντιµετώπιση ενός λάθους µε αποτέλεσµα να
καταφεύγουν σε λάθος ενέργειες, ακόµα και σε υπερπροσπάθεια για ένα ασήµαντο
συντακτικό λάθος. Για παράδειγµα µπορεί να καταφύγουν σε διαγραφή όλου του
προγράµµατος ή ακόµα και σε επανεκκίνηση του υπολογιστή.
Ο Perkins (1989) µελέτησε τις στρατηγικές των µαθητών που µαθαίνουν να

προγραµµατίζουν. Όπως και ο Du Boulay, διαπίστωσε ότι οι αρνητικές εµπειρίες
αναγκάζουν µερικούς µαθητές να σταµατήσουν την προσπάθεια τους. Αυτοί οι µαθητές
(Stoppers) εγκαταλείπουν την προσπάθεια τους µόλις βρουν ένα πρόβληµα.
∆ιαπιστώθηκε ότι αυτή η τάση θα µπορούσε να αντιµετωπιστεί αν δοθεί στους µαθητές
µια µικρή θετική εµπειρία για να τους ενθαρρύνει. Το άµεσο συµπέρασµα είναι ότι η
πρώτη επαφή και εµπειρία στον προγραµµατισµό, στο στάδιο όπου οι µαθητές
καταστρώνουν την τεχνική προγραµµατισµού τους, είναι ιδιαίτερα σηµαντική. Η άλλη
κλάση των µαθητών (Movers) ακολουθεί διαφορετικές στρατηγικές προκειµένου να
συντάξει ένα σωστό πρόγραµµα, αν και όχι πάντα µε επιτυχία. Οι µαθητές αυτοί πολλές
φορές αλλάζουν τυχαία τον κώδικα ενός προγράµµατος (προφανώς πειραµατίζονται)
χωρίς να κατανοούν που ακριβώς είναι το πρόβληµα.

ΠΡΟΒΛΗΜΑΤΑ ΚΑΤΑΝΟΗΣΗΣ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ
Η ανάθεσης τιµής σε µεταβλητή παρουσιάζει δυσκολίες και είναι γενικά αποδεκτό ότι

αποτελεί ένα από τα προβλήµατα που συναντούν οι µαθητές στη διδασκαλία του
προγραµµατισµού. Πολλοί ερευνητές έχουν ασχοληθεί µε την έννοια της µεταβλητής
και το ρόλο της στην αλγοριθµική και τον προγραµµατισµό, όπως οι Samurcay (1985),
Bayman (1983) και Rogalski (1989).

∆ιδακτική της Πληροφορικής

Η δυσκολία που παρουσιάζει η έννοια της µεταβλητής πηγάζει ορισµένες φορές από
την επιλογή του συµβόλου ανάθεσης τιµής. Ως αποτέλεσµα, εκφράσεις της µορφής
“Χ=Χ+1” προκαλούν σύγχυση και σύγκρουση µεταξύ Προγραµµατισµού και
Μαθηµατικών. Η συγκεκριµένη έκφραση δεν έχει νόηµα στα Μαθηµατικά, αφού δεν
είναι δυνατό ένας αριθµός X να είναι ίσος µε τον εαυτό του συν τη µονάδα, ενώ στον
Προγραµµατισµό παριστάνει µια εκχώρηση. Oρισµένοι ερευνητές διατυπώνουν
επιπλέον την άποψη ότι στις εκφράσεις του τύπου “Χ=Υ+1”, υπάρχει µια σύγχυση
σχετικά µε το αν το σύµβολο "=" είναι το σύµβολο ισότητας ή το σύµβολο της
εκχώρησης τιµής. Αρκετές γλώσσες προγραµµατισµού κάνουν χρήση του “=” ως
συµβόλου εκχώρησης τιµής, προφανώς για λόγους απλότητας, γεγονός που δηµιουργεί
σύγχυση µε το αλγεβρικό σύµβολο της ισότητας. Στην Pascal για να αποφεύγονται
τέτοια προβλήµατα χρησιµοποιείται το σύµβολο “:=” για την εκχώρηση τιµής.

O Du Boulay (1989) θεωρεί ότι οι παρερµηνείες στην κατανόηση των µεταβλητών
βασίζονται στα παραδείγµατα (παροµοιώσεις - αναλογίες) που χρησιµοποιούν οι
εκπαιδευτικοί στην τάξη (λ.χ. η παροµοίωση της µεταβλητής µε ένα κουτί ή ένα συρτάρι
µε µια ετικέτα, µπορεί να παρερµηνευτεί από τους µαθητές και να θεωρήσουν ότι η
µεταβλητή µπορεί να έχει περισσότερες από µία τιµές). Έτσι ορισµένοι µαθητές
θεωρούν ότι η µεταβλητή «θυµάται» κάθε τιµή που της δίνεται, εκτός αν σβηστούν τα
περιεχόµενα της µνήµης. ∆εν κατανοούν ότι η νέα τιµή καταχωρείται στη θέση της
παλιάς η οποία και χάνεται.
Άλλη περίπτωση, που αναφέρει ο Du Boulay, είναι η παροµοίωση της µεταβλητής µε

πλάκα (slate) όπου πάνω µπορούν να γραφούν τιµές. Και αυτή η αναλογία µπορεί να
παρερµηνευτεί από µαθητές, που δεν αντιλαµβάνονται ότι η υπάρχουσα τιµή
επικαλύπτεται από τη νέα. Θεωρούν τη µεταβλητή σαν µια λίστα που περιέχει όλες τις
τιµές που έχουν εκχωρηθεί στη µεταβλητή, οι οποίες και µπορούν να ανακτηθούν.
Μια συνηθισµένη παρερµηνεία της εντολής ανάθεσης τιµής Α = Β είναι η ακόλουθη:

To B συνδέεται µε το Α και έτσι όποιες αλλαγές πρόκειται να γίνουν στο Α θα
επηρεάσουν άµεσα και το Β. Παρατηρείται επίσης ότι ένα συχνό λάθος είναι η µη
απόδοση αρχικής τιµής (λ.χ. 0 ή άλλη τιµή) σε µετρητές βρόχων. Στην περίπτωση αυτή
οι µαθητές µπερδεύονται µε την αναλογία µεταβλητής – κουτιού, όπου το κουτί είναι
άδειο έως ότου τοποθετήσουµε κάτι µέσα του, οπότε ανάλογα θεωρούν ως 0 και το
περιεχόµενο της µεταβλητής.
Οι Bayman & ayer (1983) καταλήγουν στο συµπέρασµα ότι δύο είδη εκχώρησης

τιµών σε µεταβλητές µπορεί να οδηγήσουν σε παρερµηνείες. Η πρώτη περίπτωση είναι
η αρχικοποίηση (X=0) και η άλλη είναι η εξίσωση (X=Y+1). Στις περιπτώσεις αυτές οι
µαθητές συχνά θεωρούν ότι ο υπολογιστής έχει καταγράψει κάπου την πληροφορία ή
την έχει εκτυπώσει στην οθόνη ενώ αντίθετα η πληροφορία έχει αποθηκευθεί σε
συγκεκριµένη θέση στη µνήµη. Πολλοί µαθητές θεωρούν ότι αποθηκεύεται η εξίσωση
και όχι η τιµή. Οι συγγραφείς καταλήγουν στο συµπέρασµα ότι "οι αρχάριοι
προγραµµατιστές χρειάζονται ειδική εκπαίδευση στα θέµατα που αφορούν θέσεις µνήµης
και κάτω από ποιες συνθήκες οι τιµές που αποθηκεύονται στις θέσεις αυτές µπορούν να
αντικατασταθούν".

3ο Πανελλήνιο Συνέδριο

Η Samurcay (1985) καταλήγει σε τέσσερις τρόπους ανάθεσης τιµών σε µεταβλητές:
• Ανάθεση σταθερής τιµής (constant value, Α=3).
• Ανάθεση τιµής που προκύπτει από υπολογισµό (calculated value, Α=2*Β+1).
• Αντιγραφή (duplication, Α=Β).
• Συσσώρευση (accumulation, Α=Α+1).
Το µαθηµατικό υπόβαθρο ενός µαθητή για τις έννοιες της µεταβλητής και της

ισότητας τον βοηθά στους πρώτους τρεις πρώτους τρόπους ανάθεσης τιµών. ∆εν
συµβαίνει κάτι τέτοιο όµως στην περίπτωση της συσσώρευσης όπου η έννοια της
µεταβλητής προκαλεί σύγχυση και απαιτεί διαφορετική αντιµετώπιση. Στην περίπτωση
αυτή πρέπει να γίνει σαφής διάκριση µεταξύ αριστερού και δεξιού τµήµατος της
εντολής ανάθεσης, και να κατανοήσουν οι µαθητές ότι το αριστερό τµήµα σχετίζεται µε
τη θέση µνήµης ενώ το δεξί τµήµα µε την τιµή που θα πάρει η µεταβλητή.

H Samurcay επίσης κατατάσσει τις µεταβλητές σε δύο κατηγορίες - εσωτερικές και
εξωτερικές - και περιγράφει τη χρήση των τεσσάρων τρόπων ανάθεσης σε κάθε
κατηγορία µεταβλητών. Εξωτερικές είναι οι µεταβλητές που αποτελούν είσοδο ή έξοδο
(αποτέλεσµα) σε ένα πρόγραµµα. Αυτές είναι υπό τον έλεγχο του χρήστη, όταν εκτελεί
το πρόγραµµα. Εσωτερικές είναι οι µεταβλητές που είναι αναγκαίες µόνο στη
(προγραµµατιστική) λύση ενός προβλήµατος και είναι υπό τον έλεγχο του
προγραµµατιστή. Η Samurcay πιστεύει ότι οι αρχάριοι δυσκολεύονται περισσότερο µε
τον χειρισµό των εσωτερικών µεταβλητών. Αυτό συµβαίνει γιατί, στην περίπτωση αυτή,
απαιτείται µια διαρκής αναπαράσταση της εσωτερικής λειτουργίας του υπολογιστή.
Προκειµένου να ερευνηθεί αυτή η δυσκολία, µελετήθηκε η χρήση της µεταβλητής κατά
την επίλυση προγραµµάτων µε βρόχους, που αναλύεται στην επόµενη παράγραφο.

ΠΡΟΒΛΗΜΑΤΑ ΚΑΤΑΝΟΗΣΗΣ ΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ∆ΟΜΩΝ
Οι επαναληπτικές δοµές (βρόχοι) αποτελούν δοµικό στοιχείο σχεδόν κάθε

προγράµµατος, πέραν εκείνων των σύντοµων εκπαιδευτικών προγραµµάτων που
χρησιµοποιούνται στη διαδικασία εκµάθησης µια γλώσσας. Αποτέλεσαν δε, ιδιαίτερα τα
τελευταία 25 χρόνια, ένα από τα πλέον διερευνηµένα θέµατα από πολλούς ερευνητές κι
ερευνητικές οµάδες,όπως οι Soloway (1983), Rogalski (1986), Du Boulay (1989), Hoc
(1989), ∆αγδιλέλης (1996) κ.α.
Οι ερευνητές συµφωνούν στο συµπέρασµα ότι οι επαναληπτικές δοµές αποτελούν µια

περιοχή όπου παρατηρούνται δυσκολίες στους αρχάριους προγραµµατιστές. Οι
δυσκολίες αυτές µπορεί να οφείλονται είτε σε αδυναµία γενίκευσης (Hoc 1989) είτε σε
αδυναµία ανάπτυξης ενός κατάλληλου νοητικού µοντέλου της δοµής του βρόχου
(Kessler 1989). O Hoc (1989) παρατηρεί ότι υπάρχει τάση στους νέους
προγραµµατιστές να γράφουν ξανά το ίδιο κοµµάτι κώδικα αντί να χρησιµοποιήσουν
βρόχο. O Du Boulay (1989) θεωρεί ότι οι βρόχοι δηµιουργούν στους αρχαρίους αρκετά
προβλήµατα. Αρκετοί δεν κατανοούν πως γίνεται η αλλαγή τιµής στον µετρητή ενός
βρόχου FOR, µια και δεν αποτυπώνεται η ενέργεια αυτή στον κώδικα, αλλά γίνεται εξ
υποθέσεως. Οι Rogalski και Samurcay (1990) καταγράφουν τις ενέργειες που

∆ιδακτική της Πληροφορικής

λαµβάνουν χώρα στη δηµιουργία ενός βρόχου. Τρεις τύποι διεργασιών µεταβλητών
εµπεριέχονται σε ένα βρόχο:
• Αρχικοποίηση (initialization), όπου γίνεται η απόδοση των αρχικών τιµών στις

µεταβλητές του βρόχου.
• Ενηµέρωση (updating), όπου γίνεται η (απαραίτητη) αναπροσαρµογή των τιµών
των µεταβλητών.

• Έλεγχος (test), όπου καθορίζεται η συνθήκη τερµατισµού του βρόχου.
Οι αρχάριοι συνήθως δεν µπορούν να καθορίσουν το τµήµα ενηµέρωσης και συχνά

γράφουν τον κώδικα ενός βρόχου παραλείποντάς το. Επίσης δυσκολεύονται να
«συνθέσουν» τη συνθήκη εξόδου. Οι παραπάνω ερευνήτριες κατέληξαν στο
συµπέρασµα ότι η αρχικοποίηση των µεταβλητών που περιλαµβάνονται στο σώµα ενός
βρόχου είναι µια σύνθετη νοητική διαδικασία και παρουσιάζει περισσότερες δυσκολίες
από τον έλεγχο και την ενηµέρωση.
Οι επαναληπτικές δοµές µπορούν να ταξινοµηθούν µε διάφορες προσεγγίσεις.

Ανάλογα µε τη θέση που γίνεται ο έλεγχος της συνθήκης, η έξοδος από το βρόχο
διακρίνεται (Pane & Myers 1996) σε:
• Top-exit, όπου ο έλεγχος της συνθήκης γίνεται στην αρχή, πριν την εκτέλεση
εντολών του σώµατος του βρόχου, λ.χ. ο βρόχος while στην Pascal.

• Bottom-exit, όπου ο έλεγχος της συνθήκης γίνεται στο τέλος, µετά την εκτέλεση του
σώµατος του βρόχου, λ.χ. ο βρόχος repeat στην Pascal.

• Middle-exit, όπου ο έλεγχος της συνθήκης γίνεται εντός του σώµατος του βρόχου.
• Daemon-exit, όπου η έξοδος µπορεί να γίνει οπουδήποτε, αν ο έλεγχος της
συνθήκης αποτύχει.

Ο Wu (1991) επισηµαίνει ότι οι αρχάριοι στη φάση της περιγραφής, ακολουθούν τη
στρατηγική bottom-exit όταν πιστεύουν ότι είναι ευκολότερη, αλλά µετά γυρίζουν σε
στρατηγική middle-exit για όλες τις άλλες περιπτώσεις. Η έρευνα των Rogalski και
Samurcay (1990) ενισχύει την παραπάνω θέση, αφού βρίσκει ότι η στρατηγική top-exit
είναι πιο δύσκολη από την bottom-exit. Και αυτό γιατί οι νέοι προγραµµατιστές
δυσκολεύονται να αναπαραστήσουν και να εκφράσουν µια συνθήκη τερµατισµού για
ένα τµήµα κώδικα (το σώµα του βρόχου) µε το οποίο δεν έχουν ακόµα καταπιαστεί. Η
έρευνα του Soloway (1983) καταλήγει στο συµπέρασµα ότι οι αρχάριοι γράφουν πιο
σωστά το τµήµα των βρόχων ενός προγράµµατος αν χρησιµοποιήσουν µια δοµή που
επιτρέπει την έξοδο από το µέσο του βρόχου (middle-exit) και όχι από την αρχή ή το
τέλος. Προτείνουν τη δοµή loop...leave...again για την καλύτερη κατανόηση των
βρόχων. Αντίθετα ο Ledgard (1975) υποστηρίζει ότι η έξοδος από το βρόχο πρέπει να
γίνεται είτε στην αρχή είτε στο τέλος του βρόχου. Παρόλο που αυτό µπορεί να είναι
στην αρχή πιο δύσκολο, το αποτέλεσµα τελικά είναι η καλύτερη δόµηση και διαχείριση
του προγράµµατος. Η έξοδος από το µέσο ενός βρόχου, ενώ φαινοµενικά είναι σωστή,
οδηγεί σε λάθος προγραµµατιστική λογική και δυσχεραίνει την αναγνωσιµότητα
(readability) του προγράµµατος. Στο ίδιο συµπέρασµα καταλήγει και ο Sheppard (1979)
σε έρευνα που έγινε µε δείγµα οµάδα προγραµµατιστών. Συγκρίνει δύο τµήµατα κώδικα
που περιέχουν βρόχο, που το πρώτο χαρακτηρίζεται «απόλυτα δοµηµένο» και δεν

3ο Πανελλήνιο Συνέδριο

επιτρέπει την έξοδο από το µέσο του βρόχου ενώ το δεύτερο αντίθετα είναι «φυσικά
δοµηµένο» και επιτρέπει την έξοδο από το µέσο. Συµπεραίνει ότι δεν παρατηρήθηκε
αξιοσηµείωτη διαφορά µεταξύ των δύο τµηµάτων στην απόδοση των προγραµµατιστών
στη συγγραφή κώδικα. Επίσης δεν παρατηρεί διαφορά και σε θέµατα τροποποίησης και
αποσφαλµάτωσης κώδικα. Αρκετοί µαθητές θεωρούν ότι ένας βρόχος WHILE
τερµατίζεται από τη στιγµή που η συνθήκη εξόδου παύει να ισχύει (daemon-exit),
ανεξάρτητα από το σε ποια εντολή του βρόχου βρίσκεται εκείνη τη στιγµή η εκτέλεση
του προγράµµατος, ενώ κανονικά θα πρέπει να περιµένουν έως ότου η συνθήκη ελεγχθεί
στην αρχή του βρόχου (top-exit) (Sleeman 1988).
Τα πιο συχνά λάθη και παρανοήσεις των µαθητών που σχετίζονται µε βρόχους,

σύµφωνα µε τoν Sleeman (1988) είναι:
• Θεωρούν ότι µια εντολή που βρίσκεται αµέσως µετά το τέλος του βρόχου,
συµπεριλαµβάνεται σε αυτόν.

• Η τελευταία εντολή ενός βρόχου εκτελείται πολλές φορές, ενώ όλες οι άλλες
εντολές εκτελούνται µία φορά.

• ∆ίνουν χαρακτηριστικά βρόχου στο τµήµα των εντολών που εµπεριέχεται στο
begin-end.

• Πιστεύουν ότι µια µεταβλητή κρατά περισσότερες από µία τιµές και έτσι
χειρίζονται µια εντολή επιλογής (conditional) σαν βρόχο.

• Πιστεύουν ότι η µεταβλητή που χρησιµοποιείται ως µετρητής στο βρόχο FOR ή δεν
έχει τιµή µέσα στο βρόχο, ή ότι είναι σωστό να αλλάζει η τιµή της µέσα στο βρόχο.

Συµπερασµατικά, οι έρευνες φαίνεται να δείχνουν ότι, αντίθετα από τους έµµεσους ή
άµεσους ισχυρισµούς της σχολής του δοµηµένου προγραµµατισµού, όλες οι
επαναληπτικές δοµές δεν είναι εξίσου περίπλοκες για τον προγραµµατιστή.

ΠΡΟΒΛΗΜΑΤΑ ΚΑΤΑΝΟΗΣΗΣ ΤΩΝ ∆ΟΜΩΝ ΕΠΙΛΟΓΗΣ
Οι λανθασµένες αντιλήψεις των αρχάριων προγραµµατιστών έχουν συχνά την αιτία

τους στην καθηµερινή ζωή. Η λύση ενός προβλήµατος προγραµµατισµού συνήθως
προκύπτει από τη µεταφορά της επίλυσης αποτυπωµένης µε χρήση φυσικής γλώσσας
(∆αγδιλέλης 1996), που δε σηµαίνει όµως ότι µε τον τρόπο αυτό οδηγούµαστε στο
σωστό αποτέλεσµα. Γενικότερα οι αρχάριοι προγραµµατιστές συναντούν τις ακόλουθες
δυσκολίες στην κατανόηση των δοµών επιλογής:
• Εµφωλευµένες δοµές επιλογής: Εδώ ο βαθµός δυσκολίας αυξάνεται ανάλογα µε το
βάθος εµφώλευσης (Rogalski 1990).

• Σύνθετες εκφράσεις – συνθήκες: Οι πολύπλοκες εκφράσεις που χρησιµοποιούν
Boolean συναρτήσεις ή συνδυασµό προτάσεων µε τους λογικούς τελεστές AND,
OR και NOT, δυσχεραίνουν σαφώς την κατανόηση της λειτουργίας µιας εντολής
ελέγχου (∆αγδιλέλης 1996).

• Εντοπισµός των ορίων εµβέλειας (begin .. end): Η απουσία εντολών που
καθορίζουν τα όρια εµβέλειας των τµηµάτων µετά τα THEN και ELSE κάνει πιο
δύσκολη την αναγνώριση τους από τους µαθητές (Sime 1977).

Επίσης έχει παρατηρηθεί ότι:

∆ιδακτική της Πληροφορικής

• Οι µαθητές προτιµούν να χρησιµοποιούν εντολές “GOTO” ή “JUMP” στις δοµές
ελέγχου. Ο τρόπος αυτός φαίνεται να είναι πιο εύκολος σε σχέση µε τις δοµές
υψηλού επιπέδου (εµφωλευµένα IF..THEN..ELSE), αλλά παρουσιάζει σηµαντικές
δυσκολίες διαχείρισης του ελέγχου ροής του προγράµµατος (Rogalski 1990).

• Οι µαθητές που έχουν καλό µαθηµατικό υπόβαθρο µαθαίνουν τις νέες δοµές
ελέγχου γρηγορότερα (∆αγδιλέλης 1996).

O δοµηµένος προγραµµατισµός βασίζεται κατά ένα µέρος σε εµφωλευµένες εντολές.
Kλασική περίπτωση αποτελούν τα εµφωλευµένα if..then..else. Για πολλούς ερευνητές οι
εµφωλευµένες εντολές ελέγχου προκαλούν σύγχυση. Aντίθετα άλλοι ερευνητές
θεωρούν ότι, αντίθετα µε την διαδεδοµένη αντίληψη, η παράθεση ελέγχων είναι σε
ελάχιστο βαθµό και σε ορισµένες µόνο περιπτώσεις πιο κατανοητή από τους
εµφωλευµένους ελέγχους. Θεωρούν ότι οι εµφωλευµένες εντολές ελέγχου δεν πρέπει να
καταργηθούν. Aυτό όµως που φαίνεται ουσιαστικό είναι να υπάρχει µια ορατή
αντιστοιχία ανάµεσα στη δοµή του κώδικα και τη "φυσική" θέση των εντολών µέσα στο
πρόγραµµα. Έχει προταθεί ακόµη κι η χρήση ειδικών συµβόλων που χρησιµοποιούνται
από πολλούς συγγραφείς για αναπαράσταση αλγοριθµικών γλωσσών.
Σύµφωνα µε τους Putnam (1986) και Sleeman (1988), τα πιο συχνά λάθη και

παρανοήσεις των µαθητών που σχετίζονται µε τις δοµές επιλογής είναι:
• Στην περίπτωση που η δοµή επιλογής δεν έχει τµήµα ELSE, αναµένουν τη διακοπή
εκτέλεσης του προγράµµατος και την εµφάνιση µηνύµατος λάθους αν η συνθήκη
της εντολής IF είναι ψευδής (false).

• Στην περίπτωση που η δοµή επιλογής έχει και τµήµα ELSE, αναµένουν την
εκτέλεση τόσο του τµήµατος ΤΗΕΝ όσο και του ELSE.

• Αναµένουν την εκτέλεση του τµήµατος THEN ανεξάρτητα από το αν η συνθήκη
είναι αληθής ή όχι.

• Στην περίπτωση που η δοµή επιλογής δεν έχει τµήµα ELSE, διαχειρίζονται την
αµέσως επόµενη εντολή (που δεν ανήκει στην IF..THEN) όπως η ELSE, πιστεύουν
δηλαδή ότι η εντολή αυτή εκτελείται µόνο όταν η συνθήκη είναι ψευδής.

ΠΡΟΒΛΗΜΑΤΑ ΚΑΤΑΝΟΗΣΗΣ ΤΗΣ ΑΝΑ∆ΡΟΜΗΣ
Η έννοια της αναδροµής από µόνη της δεν είναι απλή στην αναπαράσταση της.

Ακόµα περισσότερο δύσκολη είναι η διδασκαλία και η εκµάθηση της. Οι µαθητές
δυσκολεύονται να κατανοήσουν τη ροή εκτέλεσης ενός προγράµµατος µε αναδροµή.
Σύµφωνα µε τους Pane & Myers (1996), oι αρχάριοι συχνά χρησιµοποιούν ένα
επαναληπτικό µοντέλο για να αναπαραστήσουν την αναδροµή που είναι συµβατό µε την
αναδροµή ουράς (tail recursion) αλλά αποτυγχάνει σε πιο γενικές περιπτώσεις. Γι’ αυτό
το λόγο η Rogalski (1990) συστήνει τη διδασκαλία της αναδροµής πριν από τις
επαναληπτικές δοµές. Σε αναλυτική έρευνα πάνω στα µοντέλα που χρησιµοποιούν οι
αρχάριοι για την αναδροµή (Kahney 1989), βρέθηκε ότι ενώ ένας µεγάλος αριθµός από
αρχάριους (>50%) φαίνεται να υιοθετούν ένα επαναληπτικό µοντέλο, στην
πραγµατικότητα οι περισσότεροι δεν κατέχουν κανένα µοντέλο. Ο Kessler (1989)
ανέλυσε τη διαδικασία µεταβίβασης της διδασκαλίας ανάµεσα στις επαναληπτικές δοµές

3ο Πανελλήνιο Συνέδριο

και στην αναδροµή. Ανακάλυψε θετικά στοιχεία όταν γίνεται µεταβίβαση από τις
επαναληπτικές δοµές στην αναδροµή αλλά όχι και αντίστροφα. Κατέληξε να προτείνει
τη διδασκαλία των επαναληπτικών δοµών πριν από την αναδροµή.

ΑΛΛΑ ΠΡΟΒΛΗΜΑΤΑ
Οι µαθητές δεν είναι εξοικειωµένοι µε την έννοια του πίνακα. Συγχέουν πολλές φορές

τις γραµµές και τα κελιά, τους δείκτες και τις τιµές. ∆υσκολία παρατηρείται και σε
γλώσσες προγραµµατισµού στις οποίες η αρίθµηση των γραµµών αρχίζει από τη θέση 0,
κάτι που αντιτίθεται στο µαθηµατικό υπόβαθρο των µαθητών, όπου η δοµή του πίνακα
αρχίζει από τη θέση 1.
Η κατανόηση των διαδικασιών εισόδου και εξόδου δεδοµένων δεν είναι εύκολη σε

αρκετές γλώσσες προγραµµατισµού. Περισσότερα προβλήµατα δηµιουργούνται στις
περιπτώσεις που η ανάθεση τιµής δεν είναι προφανής. Έτσι αρκετοί µαθητές δεν
αντιλαµβάνονται τη λειτουργία εντολών όπως READ/INPUT, δηλαδή τη διακοπή της
εκτέλεσης του προγράµµατος έως ότου ο χρήστης πληκτρολογήσει µια τιµή. Σε τέτοιες
περιπτώσεις, δηλαδή όταν τα δεδοµένα εισάγονται από το πληκτρολόγιο, ο αρχάριος
χρήστης ενδέχεται να ερµηνεύει την "ακινησία" της οθόνης σαν ένα είδος βλάβης ή ως
ένα πρόβληµα ή δυσκολεύεται να εξηγήσει την κίνηση της πληροφορίας (εισαγωγή από
πληκτρολόγιο και αποθήκευση της σε µια θέση µνήµης). Eξάλλου, εντολές όπως η
INPUT A ή READ A, πολλές φορές ερµηνεύoνται ως αποθήκευση στη µνήµη του ίδιου
του συµβόλου A (Bayman 1983). Στα σύγχρονα περιβάλλοντα ωστόσο, η είσοδος των
δεδοµένων επισηµαίνεται µε τη χρήση ειδικών παραθύρων και έτσι η υπέρβαση της
σχετικής δυσκολίας πραγµατοποιείται σε σύντοµο χρονικό διάστηµα.

ΣΥΜΠΕΡΑΣΜΑΤΑ

 Τα αποτελέσµατα των ερευνών που καταγράφουν τις δυσκολίες των αρχαρίων όταν
µαθαίνουν προγραµµατισµό αποτελούν ένα ιδιαίτερα χρήσιµο εργαλείο για τους
εκπαιδευτικούς της πληροφορικής στη διαδικασία σχεδίασης του διδακτικού τους
υλικού. Όπως αναφέρει και ο Spohrer (1986), ο συντονισµός και η ολοκληρωµένη
προσέγγιση για την επίλυση προβληµάτων είναι η βάση και για τη συγγραφή
προγραµµάτων. ∆εν είναι κάτι που µπορεί να γίνει εύκολα αλλά είναι πολύ σηµαντικό.

ΒΙΒΛΙΟΓΡΑΦΙΑ
Bayman P. & Mayer R. E. (1983), A Diagnosis of Beginning Programmers'

Misconceptions of BASIC Programming Statements, Communications of the ACM,
26(9), 677-679

Brooks R. (1977), Towards a theory of the cognitive processes in computer
programming, International Journal of Man-Machine Studies, 9, 737-751

Bruckman A. & Edwards E. (1999), Should we leverage natural-language knowledge?
An analysis of user errors in a Natural-Language-Style Programming Language,
Computer Human Interaction 1999 (CHI'99), Pittsburgh, USA, May

∆ιδακτική της Πληροφορικής

Brusilovsky P., Calabrese E., Hvorecky E., Kouchnirenko A. & Miller P. (1997), Mini-
languages: A way to learn programming principles, Education and Information
Technologies, 2(1), 65-83

Du Boulay B. (1989), Some difficulties of learning to program, in E. Soloway & J. C.
Spohrer (Eds.), Studying the Novice Programmer, 283-299, Hillsdale, NJ: Lawrence
Erlbaum Associates

Hoc J.-M. (1989), Do we really have conditional statements in our brains?, in E.
Soloway & J. C. Spohrer (Eds.), Studying the Novice Programmer, 179-90, Hillsdale,
NJ: Lawrence Erlbaum Associates

Kahney H. (1989), What do novice programmers know about recursion, ”. in E. Soloway
& J. C. Spohrer (Eds.), Studying the Novice Programmer, 209-228, Hillsdale, NJ:
Lawrence Erlbaum Associates

Kessler C. M. & J. R. Anderson (1986), A model of novice debugging in LISP, in E.
Soloway & S. Iyengar (Eds.), Empirical Studies of Programmers, 198-212,
Washington, DC, Ablex Publishing Corporation

Ledgard H. F. & Marcotty M. (1975), A genealogy of control structures,
Communications of the ACM, 18(11), 629-638

Pane J. & Myers B. (1996), Usability issues in the design of novice programming
systems, School of Computer Science Technical Report, Carnegie Mellon University,
CMU-CS-96-132, Pittsburgh

Pea R. (1986), Language-independent conceptual ‘bugs’ in novice programming,
Journal of Educational Computing Research, 2(1), 25-36

Perkins D. N., Hancock C., Hobbs R., Martin F. & Simmons R. (1989), Conditions of
learning in novice programmers, in E. Soloway & J. C. Spohrer (Eds.), Studying the
Novice Programmer, Hillsdale, NJ: Lawrence Erlbaum Associates

Putnam R. T., Sleeman D., Baxter J. A. & Kuspa L. K. (1986), A summary of
misconceptions of high school basic programmers, Journal of Educational
Computing Research, 2(4)

Rogalski J. & Samurcay R., (1990), Acquisition of programming knowledge and skills,
in J.-M. Hoc, T. R. G. Green, R. Samurcay & D. Gilmore (Eds.), Psychology of
Programming, 157-174, London: Academic Press

Samurcay R. (1985), The concept of variable in programming: Its meaning and use in
problem-solving by novice programmers, Education Studies in Mathematics, 16(2),
143-161

Schneiderman B. (1980), Software psychology: Human factors in computer and
information systems, Winthrop Publishers Inc., Cambridge

Sheppard. S. B., Curtis. B., Milliman, P. & Love. T. (1979), Modern coding practices
and programmer performance, Computer, Dec., 41-49

Sime M. E., Green T. R. G. & Guest D. J. (1977), Scope marking in computer
conditionals: A psychological evaluation, International Journal of Man-Machine
Studies, 9, 107-118

3ο Πανελλήνιο Συνέδριο

Sleeman D., Putnam R. T., Baxter J. & Kuspa L. (1988), An introductory Pascal class: A
case study of students' errors, in R. E. Mayer (Ed.), Teaching and Learning Computer
Programming: Multiple Research Perspectives, 237-257, Hillsdale, NJ: Lawrence
Erlbaum Asociates

Spohrer J. & Soloway E. (1986), Novice mistakes: are the folk wisdoms correct?,
Communications of the ACM, 29(7), 624-632

Wu Q. & Anderson J. R. (1991), Strategy selection and change in Pascal programming,
in J. Koenemann-Belliveau, T. G. Moher & S. P. Robertson (Eds.), Empirical Studies
of Programming: Fourth Workshop, 227-238, New Brunswick, NJ: Ablex Publishing
Corporation

∆αγδιλέλης Β., (1996), ∆ιδακτική της Πληροφορικής. Η διδασκαλία του
προγραµµατισµού: αντιλήψεις των σπουδαστών για την κατασκευή κι επικύρωση
προγραµµάτων και διδακτικές καταστάσεις για τη διαµόρφωσή τους, ∆ιδακτορική
διατριβή, Τµήµα Εφ. Πληροφορικής, Πανεπιστήµιο Μακεδονίας

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

