Zuvedpla tTnG EAAnViKig Emtotnuovikng Evwong TexvoAoylwyv MAnpogopiag
& Erikowvwviwy otnv Eknaidsuon

Tép. 1 (2000)

20 2uvedplo ETTIE «Ou TTE otnv Eknaideuon»

mg '[“: On the Implementation of a Multi-Agent System for
ﬁ d Computer Based Medical Education
EAAHNIKH ENIZTHMONIKH ENQIH

TEXNOAOTIQN MAHPODOPIAL A. G. Triantis, A.D. Kameas, G. Nikiforidis

& ENIKOINQNIQN ETHN EKNAIAEYZH

20 Xuvedpro ETIIE
«Ov TIIE otnv
Exnaidevon»

Matpa

10 - 13 OktwBpiov 2000

ISSN: 2529-0916

BiBAloypa@pikn avagopa:

Triantis, A. G., Kameas, A., & Nikiforidis, G. (2025). On the Implementation of a Multi-Agent System for Computer Based
Medical Education. Zuvedpia tng EAAnvikriG Erotnuovikn ¢ Evwong Texvoloyiwy lNAnpogopiag & Emkotvwviwv
otnv Eknaidsuon, 1, 246-254. avaktrnke amnod
https://eproceedings.epublishing.ekt.gr/index.php/cetpe/article/view/8258

https://epublishing.ekt.gr | e-Ek36tng: EKT | Mpodéopaon: 20/02/2026 20:42:42

246 O1 Teyvoloyiec e Inpogopiac kou tnc Emixoivoviac oty Exraidsvon

On the Implementation of a Multi-Agent System for Computer Based
Medical Education

A.G. Triantist PhD Student triantis@math.upatras.gr
PhD Computer Engineering &
A.D. Kameas! Informatics kameas@math.upatras.gr
G. Nikiforidis2 Professor gnikif(@med.upatras.gr
1 Educational Software Development Laboratory, Department of Mathematics, Univeristy of
Patras

2 Department of Medical Physics, School of Medicine, University of Patras

Abstract

Although several agent-based systems now exist on the network, most are essentially centralized on a
single agent. However, the distributed, large-scale, dynamic nature of many problem spaces such as
Medical Education calls for open, flexible and scalable solutions. This work proposes and implements a
multi-agent based system that teaches a subject of Orthopedics. The proposed solution supports easy
upgrade of the system during runtime and easy adaptation of the current system to teach other medical
subjects. This paper deals with the chosen agent organization architecture and the inter-agent
communication mechanism, which are the keys for the development of a modular, open, and adaptive
solution.

Keywords: Inscrutability, Organization of agent societies, multi-agent teams, multi-agent
communication, CORBA.

1. INTRODUCTION

In this paper, we discuss the architecture and implementation of a Multi-Agent System that
teaches a particular subject of orthopedics called "outlet" impingement, which is a cause of
chronic shoulder pain. This work consists a pilot study on the introduction of agent-based
tutoring systems in Computer-Based Medical Education (CBME).

In general, Medical Education attempts to transfer to the students a large volume of
knowledge that is constantly growing. Moreover, contemporary Medical Education aims at
guiding students into acquiring a set of critical problem-solving skills. Traditional Medical
Education adopts a system-oriented approach: each system of the human body is examined
from several perspectives of medical interest. Thus, the successful application of medical
skills calls for a synthesis of different knowledge sources, which sometimes offer overlapping
or incomplete information. On the other hand, any CBME software would deal not only with
distributed, and dynamically changing knowledge, but also with the challenge of deploying
educational services over the infrastructure of the organization.

We adopted a similar, knowledge synthesis approach in developing OPD-Tutor, aiming to
investigate the potential of introducing multi-agent systems in CBME. We believe that multi-
agent systems can be used to directly represent the knowledge synthesis and decision making
procedures used by contemporary Medical Doctors. In this paper we present OPD-Tutor, a
decentralized system, composed of “medical agents”, each of which implements a medical
specialist system. A medical specialist system can be regarded as a representation of a medical
expert: it contains the knowledge and is aware of the information resources, which are
associated with a specific domain of medical science. In the case of CBME, the domain that
the systems are aware of becomes a cognitive domain that can be used to describe (teach) a
part of a generic medical subject. In essence, each specialist system can contribute a part of
knowledge or an approach in different parts or cases of the subject. Each aspect of the medical
subject is taught by a specialized medical agent, who is responsible both for acquiring and for

2° Havelinvio Zovédpio us AicOvi Zouustoyn 247

delivering the information pertinent to the subject, according to his specialty. In a companion
paper [12] we discuss the generalization of the proposed architecture.

The main idea underlying our approach is similar to the one behind [6], [7], and [1]. Although
these systems deal with health-care management and patient treatment, they also use a multi-
agent architecture to deal with the distributed, multi-disciplinary and uncertain nature of
medical knowledge. Our design focuses mainly on issues concerning the implementation and
deployment of the multi-agent system, as well as issues regarding the retrieval and synthesis
of medical knowledge with respect to concrete instructional plans. In this respect, it is
complementary to Adele [10] a pedagogical agent, which comprise mechanisms presentation,
student monitoring and multi-modal interaction with a student through feedback, probing
questions, hints, and explanations. This agent paradigm has been applied on teaching time-
critical trauma exercise.

The tutoring architecture of OPD-Tutor is described in section 2. In the next section, we
describe inter-agent communication, without getting into technical details. In section 4, we
present implementation issues that we faced during development; they include the message
structure, the agent internal architecture and selected technology for the implementation of the
communication mechanism. Finally, the conclusions drawn from the development of OPD-
Tutor, along with our next steps are discussed in section 5

2. OPD - Tutor Tutoring Architecture

We approached the CBME problem in a manner that is common among physicians: each
specialist in a medical subject contributes his knowledge on the case at hand, in order to solve
as a team a problem that is beyond the individual capabilities and knowledge of each member
of the team. As a consequence, OPD-Tutor consists of a society of autonomous agents, each of
which is a medical expert.

The case at hand (teaching the subject of outlet impingement) requires the contribution of the
following medical experts: Orthopedist, Anatomist, Kinesipathist, Radiologist,
Pathoanatomist, Pathophysiologist, Laboratorian and Physiatrist, each of which is a medical
expert in the Orthopeadics, Anatomy, Kinesipathy, Actinology, Pathoanatomy,
Pathophysiology, Laboratory, and Physiatry, respectively. In the multi-agent organization,
each medical expert contributes its specific knowledge, capabilities, responsibilities and
behavior; each expert’s role inside the organization is determined by these characteristics.

In general, an organization populated by agents provides a framework for agent interactions
through the definition of roles, behavior expectation, and authority relations. In [11], Sycara
points out four kinds of organizations: the Hierarchy, where the decision control belongs to a
single agent and interaction takes place through vertical communication; the Community of
Experts, where a group of specialists interact through rules of order and behavior; the Market,
where a group of agents interact through bidding and contractual mechanisms; and the
Scientific community where solutions to problems are published for testing and refinement.

In designing OPD-Tutor, we adopt a hybrid organization (Figurel) that combines features
from the first two approaches. In order to collect and synthesize medical knowledge, a group
of medical specialists agents is formed according to the Community of Experts organization.
However, even though we permit vertical and horizontal communication we do not adopt the
decision control to be based on bidding and contractual mechanisms. On the contrary, decision
control belongs to a single agent, as in the Hierarchy organization.

248 O1 Teyvoloyiec e Inpogopiac kou tnc Emixoivoviac oty Exraidsvon

-
[User Interface]
=

-
| Orthopedist Agent |

Communication Channel

l
I I [I I

Anatomist
Agent

Kinesipathist Actinologist Pathoanatomist
Agent Agent

Fathophysiol
ogist Agent

-_m L
=57

Local & Remaote
Libraries

Figure 1: OPD - Tutor Tutoring Architecture

Lahoratarian Physiatrist
Agent Agent

-<+——— :message passing
e EWENE PASSING

Bearing in mind that this architecture is used for tutoring purposes, only the Orthopaedist
Agent can act as an instructor; all the instructional strategies necessary for the tutoring process
of “outlet impingement” are contained in this agent’s plans. We approached the CBME
problem using the previous architecture for two reasons:

1. Generally, the teaching process of a subject is based on a specific teaching strategy, which
is known to one agent (instructor). The teaching strategy may of course consist of different
teaching plans

2. Since no single agent can possess all medical knowledge, it is distributed across many
medical agents, who have to cooperate under the guidance of the instructor, in order to retrieve
and present those pieces of knowledge that match the instructor's plan

3. OPD — Tutor Low Level Architecture

In this section we describe the low-level architecture of OPD-Tutor (Figure 2) and particular
the inter-agent communication structure. In order to achieve modular, open and dynamically
changing behavior of the system, the proposed architecture uses an agent called Facilitator
[5]. Facilitator is not involved in the teaching procedure. This is the reason why Facilitator is
not shown in the high level architecture of the educational system. The role of Facilitator is to
provide "yellow pages" services to other agents. In other words, Facilitator is responsible for
maintaining an accurate, complete and timely list of the services that a registered agent can
provide. When each agent is started, his first responsibility is to register himself and his
services to Facilitator.

This is a key action supporting the openness and the distributed behavior of the system,
because its configuration does not depend on any particular agent and it may change
depending on the instantiated agents. Each agent that participates in the organization is
implemented as an individual, autonomous program without either knowing the capabilities or
the existence of the other agents, except Facilitator.

2° Havelinvio Zovédpio us AicOvi Zouustoyn 249

Orthopedist Agent Medicine Domain

Message Passing

Facilitator Agent

Anatomist Physiatrist
Agent Agent

Kinesipathist Laboratorian
Agent Agent

v
Radiologist Pathophysiol

Agent Pathoanatomist ogist Agent
Agent

Figure 2: OPD — Low Level Architecture

All the communication that takes place among the agents passes through the Facilitator. For

example, if the Orthopedist Agent wishes to send a message a to the Radiologist Agent, he

will first send a message b to the Facilitator asking for him to forward the message a to the

Radiologist Agent. The answer of the Radiologist Agent will pass through the Facilitator, too.

Allowing point-to-point communication only between an agent and the Facilitator, provides

OPD-Tutor with desirable properties such as:

1. Modularity. Each agent can be implemented by different people and different
programming tools with the restriction of knowing the communication means (explained
later) between him and the Facilitator of the OPD-Tutor.

2. Reusability: It permits an agent to be member of more than one CBME systems, each of
which may deal with different Medical Education domains.

3. Adaptability: It is easy to change the instructional strategy and the education methodology
of OPD-Tutor simply by substituting one instructional agent with another, without having
to re-program and recompile the whole system. However, the current architecture does
not provide for more than one instructional agents. Such an extension would require
negotiation among different instructor agents, probably, on the basis of which
instructional strategy is more suitable for the current user.

4. Openness: It is possible to replace any medical agent “on —the-fly” (dynamically and
transparently), while the system is in use. For example, the Anatomist agent can be
replaced by another Anatomist agent, which is implemented probably by different
programmer(s), and includes different plans'.

5. Plug ‘n’ play. By registering his capabilities to Facilitator, when each agent is started, he
enters the tutoring processing upon instantiation.

6. Scalability. Considering that a Facilitator controls one educational domain (Medicine in
our case), the system can easily be scaled up to support multi-domain education by adding
one or more multi-agent systems, each with its own Facilitator which interact through a
“common” Facilitator of a “higher” level.

The main disadvantage of point-to-point communication only between an agent and the

Facilitator is the unavoidable delay of message transportation from one agent to another. The

delay increases if more than one domain participate in the tutoring architecture, since

communication may pass through the Facilitator of two domains. Nevertheless, the above-
mentioned advantages and the speed of contemporary computers make up for these delays.

The above advantages of the selected low-level architecture fulfilled the goals of this

framework.

! Plans describe the possible ways that an agent can bring about a goal

250 O1 Teyvoloyiec e Inpogopiac kou tnc Emixoivoviac oty Exraidsvon

4. Implementation |ssues

In our work we consider an agent to be a modular and autonomous executable program. His
implementation comprises the development of three separate parts: the Message Structure, the
Agent Core and the Communication Module (Figure 3).

Agent Core

.
' | Intergration Module

. .
.

.

.

Transport
Mechanism
(CORBA)

Agent

8|NPO UOKEIIUNWWOD

Message

World

Figure 3: The agent structure

4.1 The Message Structure

A message is an individual unit (building block) of inter-agent communication that is based on
the speech act theory [9], where every intended communication action from an agent changes
the world in an analogous way a physical action does. A message as defined by FIPA in [4]
and implemented in OPD-Tutor system, has the following structure:

Communicative act (

Sender
Receiver
Content ()
in-reply-to
reply-with
Language
Ontology

)

Figure 4: Message Structure
The first word of the message structure represents the communicative act (CA) of the message
(corresponding to a performative of KQML). An agent performs an action, which is implied
by the CA having as parameters the elements of the message structure as shown in Figure In
our framework, we make use of a subset of FIPA's CAs, which are common for all the agents
that populate the society of the medical educational system. Each CA implies that the content
of the message contains a specific set of actions. In this case,
¢ The "cancel", "request" and "refuse" CA implies that the receiver will perform a
specific action.
¢ The "inform" CA implies that the receiver will update his knowledge base and
especially his believes about specific things of the environment.
e The "failure" and "not-understood" CA implies that the receiver will update his
knowledge base and will act in order to handle the error handling.
The comprehension and the execution of the action depends on what actions the recipient can
perform. These actions are defined by the Content element, which has precisely defined
syntax, and semantics [4]. In our framework, we make use of the PROLOG language structure
and syntax, in order to define the Content element. As a consequence, each action is a
PROLOG data structure.
The Content is not the same for all the agents, but depends on the actions that each agent
performs. In this case, the actions are divided into those supported by Facilitator and those
supported by either of the medical agents or the Orthopedist agent.

2° Havelinvio Zovédpio us AicOvi Zouustoyn 251

4.1.1 Actions supported by Facilitator

Register: An agent registers its services to the Facilitator in order to publicize some or all of
them to other agents. There is no intended future commitment or obligation, on the part of the
registering agent implied in the act of registering. For example, an agent can refuse a request
for a service, which is advertised through the Facilitator. There is a commitment on behalf of
the Facilitator to honestly broker the information it holds.

Search: A search action implements a request from an agent, who expects to get a specific list
of agent names that involve specific services. The Facilitator is responsible for searching his
database of the registered and active agents and to provide the list of the agent names. The
answer to a search request is a result information.

Modify: This action involves changing an agent’s registration fields. The content of a modify
message will replace that information which is currently registered for that agent.

Deregister: An agent de-registers in order to remove any record of his services from a domain.
The de-register action has the consequence that there is no longer a commitment on behalf of
the Facilitator to broker information relating to that agent.

Forward: An agent can ask the Facilitator to forward a message to a destination agent. In the
case that the sender does not know the name of the receiver then Facilitator has to search
among the registered agents with the service as a keyword and forward the message to one of
the agents (randomly) that provide the same service. For example, when the Orthopaedist
Agent needs someone with knowledge of Anatomy, he requests from the Facilitator to forward
the message to a registered agent who provides Anatomy services.

4.1.2 Actions supported by therest of agents

Teach: The teach action implies that the recipient will undertake the responsibility of finding
the appropriate Learning Unit (LU)' for the specific plan name and return the LU’s location to
the sender.

Location: The location action returns to the sender the appropriate LU’s location according to
the requested plan-name The location action is an answer to the teach one. The location action
updates the sender’s knowledge base.

Result: The result action is an answer to the requested action search. The Facilitator returns to
the sender a list of agents who can provide the requested service. The result action updates the
sender’s knowledge base.

4.2 The Agent Core

The Agent Core is the essential part of each agent. It contains the knowledge base and the
reason-about mechanisms of each agent. Its structure is based on the well-known BDI logical
framework [3] where each agent is viewed as having the three mental attitudes of belief, desire
and intention (BDI). In addition to three modules that represent the three mental attitudes
(Figure 5) every agent contains a plan library, an inference engine and a communication
module. Plans describe the possible ways that an agent can bring about an intention. In
general, a plan is a partial commitment on how to achieve a desire. The Inference engine is the
mechanism that handles and updates the agent’s mental state (beliefs, desires and intentions),
selects, executes and rejects plans according to the mental state and processes the incoming
message that transfers the observations of the agent’s environment.

In our framework, we implement the Agent Core using the PROLOG programming language
because we believe that the built in backtracking mechanism as well as its data structures that
it supports, makes it suitable programming language for non-deterministic management of
knowledge and information.

! A Learning Unit (LU) is a piece of Knowledge represented in multimedia format.

252 O1 Teyvoloyiec e Inpogopiac kou tnc Emixoivoviac oty Exraidsvon

Beliefs

Intentions

auibu3 souaiaju|

Figure 5: Internal agent architecture

4.3 Communication Module

The communication module is responsible for message transportation. It consists of two
separate parts (Figure 3): the Integration Module and the Transport Mechanism.

4.3.1 TheIntegration Module

The integration module is responsible for the integration between the Agent Core and the
Transport Mechanism. In this way, we support the ability to choose the appropriate transport
mechanism according to the current implementation circumstances without having to entirely
redesign the agent’s implementation.

Logic Server

Extended Built-in
Predicates Predicates

Java Interface i

Figure 6: The Integration Module
The integration module consists of two parts (Figure 6): The Logic Server and the Java
Interface. The Logic Server is the PROLOG runtime engine, which exports a collection of
functions that provide access to the built-in Prolog predicates, including the ability of
backtracking as well as the implementation of custom built-in predicates, called extended
predicates. In our work, we make use of the extended predicate Send (Figure 7) in order to
send a message via the transport mechanism directly from PROLOG.

Send (

CA,
Sender,
Receiver,
Content,
Reply_to,
Reply_with,
Language,
Ontology)

Figure 7: The Send Extended Predicate
The elements of the Send correspond to the message structure. The Content element can
contain a whole message in the case, where an agent requests from Facilitator to forward a
specific message to another agent. The Java Interface contains the implementation of the Send
extended predicate and the transport mechanism. In addition, it is responsible for the
integration of the two previous separate implementations.

2° Havelinvio Zovédpio us AicOvi Zouustoyn 253

4.3.2 The Transport M echanism — CORBA

The transport mechanism is the physical means for message exchange. Several transport
mechanisms have been proposed in agent literature such as TCP/IP sockets, Java RMI, HTTP,
Unix RPC, Email and CORBA. In our framework, considering each agent as a Client/Server
entity, the transport mechanism has been implemented with CORBA for two reasons:

1. FIPA addresses a minimal set of requirements on the communication protocol for building
open, distributed systems [4], which are fulfilled by CORBA.

2. CORBA offers services, such as naming services, trader services, access control services,
event services, which make it suitable to easily implement inter-agent communication
mechanisms.

The CORBA implementation is described by an Interface Definition Language (IDL) file,
which describes the services that a CORBA object can provide. In the context of multi-agent
systems we used the IDL file (Figure 8) to describe (in the form of an interface) a procedure
that takes as parameters those elements of the message structure which take place in inter-
agent communication. The implementation of this interface is taking place in the Java
interface (Figure 6).

module Agents {
interface SendManager {
void Send message(in string communicative_act,
in string sender,
in string receiver,
in string content,
in string in_reply_with,
in string in_reply_to,
in string language
in string ontology);

Figure 8: The IDL file

A similar work to ours (KQML-CORBA based multi-agent toolkit for management) is
described in [2], where the authors propose a different CORBA IDL file. The main idea is that
each of the values of the performative element is described in the IDL file as an interface.
Consequently, the processing of the messages takes place in the implementation part of these
interfaces. In contrast to this approach, we propose the IDL file of Figure 8 which describes
only the message structure and not the values that describe the message. With this approach
we manage to delegate the processing of the message to the inference engine of agent core
module.

5. Discussion

During the last month of the previous academic year, the system was put to a trial operation by
granting a group of medical students with access to it. In total 30 students used the software in
3 sessions of 10. Each student was using a PC (Pentium 133, Windows NT) connected to the
local network and the Internet. The prototype of the application contained 9 agents (as shown
in Figure 2), each of which was running on a different machine of the network. The learning
units were stored in a database and managed by a database server program. Each agent was
instantiating separate database clients in order to access the database. During each session,
each student used the system six times, performing different tasks.

After each system run, we asked the students simple questions about the features they liked or
disliked, the capabilities they would like to see and the technical problems they encountered.
Although this does not constitute a complete summative evaluation (it was rather a system
testing at the environment where it will be used), the initial processing of the results showed
that:

Students were attracted by the following system features:

254 O1 Teyvoloyiec e Inpogopiac kou tnc Emixoivoviac oty Exraidsvon

1. robustness: the system was still operating (albeit providing a limited functionality) even
when a part of the network was shut down (provided that the facilitator agent and the
instructional agent were operational).

2. presentation: the system presents the next tutoring action as a set of hypermedia links to be
visited by the student. This allows the student to learn on his own pace.

scalability: when a new medical agent was added the students could immediately see the
results of its services, as more links to learning units were available for the same tutoring steps
A set of problems has to resolved:

1. user interface must become adaptive to each student's needs. In order to achieve this, a
student model must be designed. We plan to implement a user-interface agent analogous to
Adele [1].

2. the response time has to be improved. Delays in presenting the next tutoring step are due to
the message exchange between each agent and the Facilitator agent. We expect to reach a
trade-off between complete modularity / adaptability (which is supported by including all
structural knowledge in the facilitator only) and speed (by storing a part of structural
knowledge with each medical agent - i.e. a set of most recent agents it contacted). Although
this will allow us to implement point-to-point communication between medical agents, a
degree of scalability will be sacrificed

6. Acknowledgments

Our thanks to Dr. M. G. Salmas, lecturer with the Department of Anatomy, University of Athens for the
consultation he provided on the teaching of “outlet” impingement. The described work is part of the
project X-Genitor (PENED 99ED68) founded by the General Secretariat for Research and Technology of
the Ministry of Development and European Social Fund.

7. References

1. Aknine, S., and Aknine, H. (1999). Contribution of a Multi-agent Cooperation Model in a Hospital
Environment. In Proceedings of the Second International Conference on Autonomous Agents ACM Press.

2. Benech, D., and Desprats, T. (1997). A KQML-CORBA based Architecture for Intelligent Agents
Communication in Cooperative Service and Network Management. In IFIP/IEEE International
Conference on Management of Multimedia Networks and Services '97. Montreal. Canada.

3. Cohen, P. R. and Levesque, H. J. (1990). Intention is choice with commitment. Artificial Intelligence,
42:213-261.

4. Foundation for Intelligent Physical Agents. FIPA 97. (1997). Specification. Part 2. Agent Communication
Language. Geneva, Switzerland.

5. Genesereth M. R. and Ketcpel S. P. (1994). Software Agents. Communications of ACM, 37(7): 48-53.

6. Hayes-Roth, B., Washington, R., Ash, D., Hewett, R., Collinot, A. Vina, A., and Seiver. A. (1992).
Guardian: A Prototype Intelligent Agent for Intensive-Care Monitoring. Journal of Al in Medicine:
Special issue on Expert Systems for the Intensive Care Setting.

7. Huang, J., Jennings, R., and Fox, J.: An Agent Architecture for Distributed Medical Care, Intelligent
Agents (Eds. M. J. Wooldridge and N.R. Jennings), Lecture Notes in Artificial Intelligence, Springer
Verlag, 1995, 219-232.

8. N. R. Jennings and M. Wooldridge.(1998) Applications of Agent Technology In N. R. Jennings and M.
Wooldridge, editors, Agent Technology: Foundations, Applications, and Markets. Springer-Verlag, March
1998.

9. Searle, J. R. Speech Acts: An Essay in the Philosophy of Language. Cambridge University Press:
Cambridge, England (1969).

10. Shaw, E., Johnson W., L., and Ganeshan, R. (1999). Pedagogical Agents on the Web. In Proceedings of
the Second International Conference on Autonomous Agents ACM Press.

11. Sycara K. (1998). Multiagent Systems. AI Magazine vol 19, No 2, 78-92

12. Triantis A, Kameas A, Zaharakis I et. Al (2000) Towards a generic Multi-Agent Architecture of
Computer-Based Medical Education Applications. IIpoktikéd tov 20v Ilaveddnviov XZvvédprov "Ot
Teyvoloyieg g [TAnpogopiog kot g Emcowvaviag otnv Exnaidevon".

http://www.tcpdf.org

