

 Συνέδρια της Ελληνικής Επιστημονικής Ένωσης Τεχνολογιών Πληροφορίας
& Επικοινωνιών στην Εκπαίδευση

 Τόμ. 1 (2003)

 2ο Συνέδριο Διδακτική της Πληροφορικής

 ∆ιδασκαλία δοµών επανάληψης µε τη χρήση του
µεταγλωττιστή ∆ιερµηνευτής της ΓΛΩΣΣΑΣ στα
πλαίσια του µαθήµατος «Ανάπτυξη Εφαρµογών σε
Προγραµµατιστικό Περιβάλλον»

 Άλκης Γεωργόπουλος

Βιβλιογραφική αναφορά:

Γεωργόπουλος Ά. (2025). ∆ιδασκαλία δοµών επανάληψης µε τη χρήση του µεταγλωττιστή ∆ιερµηνευτής της
ΓΛΩΣΣΑΣ στα πλαίσια του µαθήµατος «Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον» . Συνέδρια της
Ελληνικής Επιστημονικής Ένωσης Τεχνολογιών Πληροφορίας & Επικοινωνιών στην Εκπαίδευση, 1, 324–328.
ανακτήθηκε από https://eproceedings.epublishing.ekt.gr/index.php/cetpe/article/view/7874

Powered by TCPDF (www.tcpdf.org)

https://epublishing.ekt.gr | e-Εκδότης: EKT | Πρόσβαση: 21/01/2026 07:20:46

324 2η Πανελλήνια ∆ιηµερίδα µε διεθνή συµµετοχή «∆ιδακτική της Πληροφορικής»

∆ιδασκαλία δοµών επανάληψης µε τη χρήση του µεταγλωττιστή
∆ιερµηνευτής της ΓΛΩΣΣΑΣ στα πλαίσια του µαθήµατος «Ανάπτυξη

Εφαρµογών σε Προγραµµατιστικό Περιβάλλον»
Άλκης Γεωργόπουλος
Εκπαιδευτικός ΠΕ19

alkisg@sch.gr

Το µάθηµα «Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον»
Το µάθηµα «Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον» αποτελεί το
βασικό µάθηµα της Γ΄ τάξης του κύκλου Πληροφορικής και Υπηρεσιών της
Τεχνολογικής Κατεύθυνσης του Ενιαίου Λυκείου. Ο γενικός σκοπός του µαθήµατος
είναι να αναπτύξουν οι µαθητές αναλυτική και συνθετική σκέψη, να αποκτήσουν
ικανότητες µεθοδολογικού χαρακτήρα και να µπορούν να επιλύουν απλά προβλήµατα
σε προγραµµατιστικό περιβάλλον (ΥΠΕΠΘ-ΠΙ, 1997).
Συνεπώς, το συγκεκριµένο µάθηµα έχει ως πρωταρχικό στόχο την ανάπτυξη
δεξιοτήτων και ικανοτήτων σχετικών µε την αλγοριθµική και την ορθολογική χρήση
των δεξιοτήτων αυτών στην καθηµερινή ζωή. Πολλές βασικές έννοιες αλγοριθµικής
(αλλά και προγραµµατισµού), όπως συνθήκες ελέγχου, λογικές προτάσεις και
συµπεράσµατα, κ.α., συνιστούν αναπόσπαστο τµήµα των γενικών γνώσεων και
δεξιοτήτων που πρέπει να αποκτήσει ο µαθητής στο πλαίσιο της γενικής του παιδείας,
οι οποίες - στην πλειονότητά τους - δεν προσεγγίζονται από άλλα γνωστικά αντικείµενα
(Πολίτης & Κόµης, 1999).
Βασικό ζητούµενο ενός σύγχρονου προγράµµατος σπουδών είναι η καλλιέργεια
δεξιοτήτων σχετικών µε την κατανόηση, ανάλυση και επίλυση προβληµάτων. Το εν
λόγω µάθηµα έρχεται να καλύψει το κενό που υπάρχει στο πρόγραµµα σπουδών και
αφορά στις δραστηριότητες επίλυσης προβληµάτων. Η διδασκαλία του περιλαµβάνει
την ανάπτυξη τέτοιου είδους δεξιοτήτων µε επικέντρωση στα ποικίλα - ως προς τη
φύση τους - προβλήµατα, στο ίδιο το πρόβληµα, την σχεδίαση της επίλυσής του και σε
µικρότερο βαθµό στην υλοποίηση της επίλυσης.
Το µάθηµα «Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον» δεν έχει ως
στόχο τη διδασκαλία και την εκµάθηση κάποιου συγκεκριµένου προγραµµατιστικού
περιβάλλοντος. ∆εν αποσκοπεί στη λεπτοµερειακή εξέταση της δοµής, του ρεπερτορίου
και των συντακτικών κανόνων κάποιας γλώσσας προγραµµατισµού. Με άλλα λόγια,
δηλαδή, δεν προτίθεται να δηµιουργήσει προγραµµατιστές, γι’ αυτό το λόγο δεν
αναφέρεται στην εκµάθηση εξεζητηµένων τεχνικών προγραµµατισµού, αλλά εστιάζει
στις προσεγγίσεις και στις τεχνικές επίλυσης προβληµάτων δίνοντας έµφαση στον
τρόπο δόµησης της σκέψης (ΥΠΕΠΘ-ΠΙ, 1998).

∆οµές επανάληψης και διδακτικά προβλήµατα
Κατά τη σύνταξη µιας δοµής επανάληψης προσδιορίζονται οι λειτουργίες που πρέπει να
επαναληφθούν καθώς και η συνθήκη που θα προσδιορίζει την συνέχιση ή µη της
επαναληπτικής διαδικασίας (Rogalski & Samurçay, 1990).
∆ύο είναι οι δυνατοί τρόποι έκφρασης µιας επαναληπτικής διαδικασίας της οποίας ο
αριθµός επαναλήψεων δεν είναι εξ αρχής γνωστός:
Επαναληπτικός βρόχος / συνθήκη ελέγχου
Συνθήκη ελέγχου / επαναληπτικός βρόχος

2η Πανελλήνια ∆ιηµερίδα µε διεθνή συµµετοχή «∆ιδακτική της Πληροφορικής» 325

ΟΙ δύο αυτοί τρόποι δεν παρουσιάζουν τα ίδια διδακτικά προβλήµατα από την πλευρά
των µαθητών (Τζιµογιάννης & Γεωργίου, 1999). Ο τρόπος «προγραµµατιστικής
έκφρασης» των µαθητών επηρεάζεται από τις αναπαραστάσεις που έχουν σχετικά µε
την επανάληψη. Ο τύπος της επαναληπτικής δοµής που ταιριάζει καλύτερα στις αρχικές
ιδέες των µαθητών είναι ο Επανάλαβε…Όσο, ενώ αντίθετα ο τύπος Όσο…
Επανάλαβε, εµφανίζει περισσότερα προβλήµατα κατανόησης γιατί ακολουθεί αντίθετη
πορεία συλλογισµού από αυτήν που έχουν συνηθίσει οι µαθητές (Κόµης, 2001).

Μελέτη περίπτωσης: ∆ιδασκαλία της εντολής «Όσο» µε το ∆ιερµηνευτή
Ο διερµηνευτής της ΓΛΩΣΣΑΣ αποτελεί ένα ολοκληρωµένο περιβάλλον ανάπτυξης
προγραµµάτων στη ΓΛΩΣΣΑ προγραµµατισµού που ορίζεται στο βιβλίο του
µαθήµατος «Ανάπτυξη εφαρµογών σε προγραµµατιστικό περιβάλλον» της Γ’ Ενιαίου
Λυκείου. Ο σχεδιασµός του περιβάλλοντος διεπαφής και των διαθέσιµων λειτουργιών
του διερµηνευτή δεν έγινε µε στόχο την απλή απόδοση στα ελληνικά ενός
«επαγγελµατικού» προγραµµατιστικού περιβάλλοντος, αλλά µε κύριο γνώµονα την
υποβοήθηση του διδάσκοντα κατά την παρουσίαση των προγραµµατιστικών εννοιών
και την κατάλληλη καθοδήγηση των µαθητών στα πρώτα βήµατα επίλυσης
αλγοριθµικών προβληµάτων.
Ας εξετάσουµε τον συνήθη τρόπο παρουσίασης της εντολής «Όσο» στον πίνακα, ώστε
να δούµε σε ποια σηµεία µπορεί να βοηθήσει ο διερµηνευτής. Ο καθηγητής µπορεί να
ξεκινήσει εξηγώντας την αναγκαιότητα για µια νέα εντολή, παρουσιάζοντας ένα
πρόβληµα το οποίο δεν µπορεί να λυθεί µε τις ήδη γνωστές
εντολές. Πρόγραµµα Αριθµοί

Αρχή
 Γράψε 1
 Γράψε 2
 Γράψε 3
 Γράψε 4
 Γράψε 5
 Γράψε 6
 Γράψε 7
 Γράψε 8
 Γράψε 9
 Γράψε 10
τέλος_προγράµµατος

Σχήµα 1
Ακολουθιακή λύση

Ένα απλούστατο παράδειγµα είναι η κατασκευή προγράµµατος
που να εµφανίζει 10 αριθµούς. Αυτό είναι πολύ εύκολο µε τις
γνωστές εντολές και η λύση του περιλαµβάνει απλά την
επανάληψη της εντολής «Γράψε» 10 φορές (σχήµα 1).
Τι γίνεται όµως αν θέλουµε να εµφανίσουµε χιλιάδες
αριθµούς; Ή αν τη στιγµή που γράφουµε το πρόγραµµα δεν
ξέρουµε πόσους αριθµούς θέλουµε να εµφανίσουµε αλλά αυτό
είναι απόφαση του χρήστη ή εξαρτάται από τα δεδοµένα του
προβλήµατος, όπως για παράδειγµα ο υπολογισµός των τόκων
στο τέλος του έτους από µία τράπεζα; Ο αριθµός των
λογαριασµών δεν είναι σταθερός. Εποµένως η αντιµετώπιση
του προβλήµατος µε τις ήδη γνωστές εντολές δεν είναι εφικτή.
Η λύση είναι να χρησιµοποιηθεί η εντολή «Όσο».
Η σύνταξη της εντολής είναι: όσο ισχύει κάποια συνθήκη
επαναλαµβάνονται κάποιες εντολές (σχήµα 2).
Το διάγραµµα ροής (εικόνα 1)
επιδεικνύεται στον πίνακα για την
καλύτερη αναπαράσταση της ροής
εκτέλεσης. Το πρόγραµµα καθώς
εκτελείται συναντά µία συνθήκη. Αν αυτή
η συνθήκη δεν ισχύει (Ψευδής), τότε το
πρόγραµµα συνεχίζει µε την επόµενη
εντολή. Αν όµως ισχύει (Αληθής), τότε
εκτελούνται οι εντολές που βρίσκονται
µέσα στην «Όσο». Στη συνέχεια το

Εικόνα 1 ∆ιάγραµµα ροής της εντολής «Όσο»

συνθήκησυνθήκησυνθήκη εντολές εντολές εντολές

ΨευδήςΨευδήςΨευδής

ΑληθήςΑληθήςΑληθής

326 2η Πανελλήνια ∆ιηµερίδα µε διεθνή συµµετοχή «∆ιδακτική της Πληροφορικής»

πρόγραµµα µπαίνει σε κύκλο, αποτιµώντας την συνθήκη και εκτελώντας τις εντολές. Οι
εντολές αυτές επηρεάζουν τα στοιχεία της συνθήκης, οπότε αυτή κάποια στιγµή παύει
να ισχύει. Τότε η ανακύκλωση σταµατάει και το πρόγραµµα συνεχίζει µε την επόµενη
εντολή.
Ας δούµε πώς υλοποιείται το προηγούµενο πρόγραµµα χρησιµοποιώντας αυτήν την
εντολή (σχήµα 2).
Όσο συνθήκη επανάλαβε
 εντολές
τέλος_επανάληψης
Σχήµα 2: Η σύνταξη της εντολής «Όσο»

Πλέον µόνο µία εντολή «Γράψε» αρκεί, όµως για να γράψουµε όλους αυτούς τους
αριθµούς χρειαζόµαστε και έναν µετρητή, την µεταβλητή i. Ξεκινάµε από την τιµή 1
και θα πρέπει να συνεχίσουµε µέχρι το i να φτάσει την τιµή 100. Έτσι µέσα στην
επανάληψη θα πρέπει εκτός από την εντολή «Γράψε» να υπάρχει και η αύξηση του
µετρητή. Όταν τελικά το i ξεπεράσει το 100 η συνθήκη γίνεται ψευδής, οπότε η
εκτέλεση του προγράµµατος συνεχίζει µε τις εντολές που βρίσκονται κάτω από το
«τέλος_επανάληψης».
Ας δούµε τώρα αν µπορεί να βοηθήσει ο διερµηνευτής στην παρουσίαση της νέας
εντολής.
Οι µαθητές καλούνται να ανοίξουν το παράδειγµα που έχει ετοιµάσει ο καθηγητής. Θα
πρέπει να πιέζουν τακτικά το πλήκτρο βήµα προς βήµα εκτέλεσης, να παρακολουθούν
τις τιµές του µετρητή i αλλά και της συνθήκης της Όσο, ώστε να βλέπουν αν θα γίνει
διακλάδωση ή όχι. Τέλος τα αποτελέσµατα της εντολής «Γράψε» εµφανίζονται στην
οθόνη χρήστη.
Στην αρχή της εκτέλεσης η µεταβλητή i δεν έχει τιµή, και αυτό φαίνεται από την
χαρακτηριστική παύλα (-). Συνθήκη στην τρέχουσα εντολή δεν υπάρχει και έτσι και σ’
αυτήν υπάρχει παύλα. Φτάνουµε στην εντολή όσο, οπότε βλέπουµε ότι το i έχει γίνει 1
και αφού είναι µικρότερο από 10 η συνθήκη είναι αληθής. Συνεχίζουµε και
παρατηρούµε ότι το i γράφεται στην οθόνη χρήστη και στη συνέχεια αυξάνεται. Εδώ
βλέπουµε καθαρά ότι η επόµενη εντολή µετά το i ← i + 1 δεν είναι το
«τέλος_επανάληψης», αλλά πάλι η εντολή όσο. Η συνθήκη ισχύει ακόµα, οπότε γίνεται
και δεύτερη ανακύκλωση. Το i γράφεται, αυξάνεται και πάλι από την αρχή. Εδώ µπορεί
να ενεργοποιηθεί η δυνατότητα «αργής εκτέλεσης» του διερµηνευτή ώστε να βλέπουµε
την εκτέλεση χωρίς να πατάµε συνέχεια το πλήκτρο βήµα προς βήµα εκτέλεσης.
Τελικά το i θα γίνει 11, οπότε η συνθήκη θα είναι ψευδής. Εποµένως το πρόγραµµα δεν
θα εκτελέσει την εντολή «Γράψε i», αλλά θα συνεχίσει µε τις εντολές που βρίσκονται
από το «τέλος_επανάληψης» και κάτω.
∆εν µπορούµε να είµαστε σίγουροι ότι το πρόγραµµα που γράψαµε είναι σωστό αν δεν
το «τρέξουµε» στον υπολογιστή ώστε να επιβεβαιώσουµε ότι εκτελείται κανονικά και
αποδίδει τα σωστά αποτελέσµατα. Τα προγραµµατιστικά λάθη χωρίζονται σε δύο
βασικές κατηγορίες, τα συντακτικά λάθη, τα οποία είναι λάθη στην σύνταξη των
εντολών και τα λάθη εκτέλεσης ή αλλιώς λογικά λάθη. Τα πρώτα µπορούν να λυθούν
εύκολα όταν γράφουµε σε πραγµατικό προγραµµατιστικό περιβάλλον, ενώ τα δεύτερα
είναι πιο δύσκολο να εντοπιστούν.

2η Πανελλήνια ∆ιηµερίδα µε διεθνή συµµετοχή «∆ιδακτική της Πληροφορικής» 327

Παράδειγµα χρήσης
Ας δούµε ένα παράδειγµα χρήσης και τα πιθανά λάθη που µπορεί να κάνει ο µαθητής.
Η εκφώνηση είναι και πάλι απλή και λέει να φτιαχτεί ένα πρόγραµµα το οποίο θα
διαβάζει τους αριθµούς που δίνει ο χρήστης, µέχρι ο χρήστης να δώσει τον αριθµό
µηδέν, ο οποίος ορίζεται σαν συνθηµατικό για τον τερµατισµό των επαναλήψεων. Στο
τέλος θέλουµε να εµφανιστεί το πλήθος των αριθµών που εισήγαγε ο χρήστης.
Μία πρώτη λύση που µπορεί να δώσει ο µαθητής είναι η ακόλουθη:
• Μία εντολή «∆ιάβασε», αφού το πρόγραµµα πρέπει να πάρει δεδοµένα από τον

χρήστη,
• Μία επανάληψη «Όσο» που η συνθήκη της θα είναι η είσοδος να µην είναι µηδέν,
• Μία αύξηση κατά ένα σε κάθε επανάληψη ώστε να µετράει πόσοι αριθµοί

πέρασαν,
• Μια εντολή «Γράψε» για να εµφανιστεί το πλήθος των αριθµών.
Το σηµαντικότερο πρόβληµα είναι ότι αν ο µαθητής λύνει την άσκηση στο χαρτί, δεν
έχει κανέναν απολύτως τρόπο να επιβεβαιώσει την ορθότητά της. Σ’ αυτό το σηµείο
είναι απαραίτητη η χρήση ενός προγραµµατιστικού περιβάλλοντος, το οποίο θα δείξει
στον µαθητή ότι η λύση του έχει και δύο συντακτικά αλλά και πολλά λογικά λάθη.
 «∆εν είναι δυνατή η πράξη «όχι» στην ακέραια έκφραση 0». Αυτό είναι ένα
συντακτικό λάθος και σηµαίνει ότι η συνθήκη που έγραψε ο µαθητής δεν είναι σωστά
διατυπωµένη. Με λίγη σκέψη ο µαθητής µπορεί να βρει ότι ο σωστός τρόπος να την
γράψει είναι «όχι χ = 0», η πιο απλά «χ <> 0».
Ξαναπροσπαθεί να εκτελέσει το πρόγραµµα και βλέπει ένα ακόµα µήνυµα συντακτικού
λάθους, το «άγνωστο αναγνωριστικό: επανέλαβε». Άγνωστα αναγνωριστικά
ονοµάζονται µεταβλητές που δεν έχουν δηλωθεί στο τµήµα δήλωσης µεταβλητών του
προγράµµατος. Όµως ο µαθητής δεν ήθελε να γράψει κάποια µεταβλητή, αλλά µία
εντολή της ΓΛΩΣΣΑΣ, δηλαδή δεσµευµένη λέξη. Κοιτάζοντας το χρώµα της λέξης
µπορεί να παρατηρήσει ότι αυτό είναι µαύρο αντί για µπλε, όπως είναι όλες οι άλλες
εντολές, και εποµένως ο διερµηνευτής δεν την αναγνωρίζει σαν δεσµευµένη λέξη.
Αφού την διορθώσει, επαναρχίζει η εκτέλεση του προγράµµατος.
Περιπτώσεις προγραµµατιστικών λαθών παραδείγµατος χρήσης
Ατέρµονη επανάληψη. Ο µαθητής εισάγει τον πρώτο αριθµό και παρατηρεί ότι το
πρόγραµµα εκτελείται, χωρίς να του ζητάει κάτι άλλο. Μετά από λίγα δευτερόλεπτα ο
διερµηνευτής εµφανίζει το µήνυµα «Αυτό το πρόγραµµα έχει ήδη εκτελέσει 1.000.000
εντολές. Αν νοµίζετε ότι βρίσκεται σε ατέρµονα βρόχο, µετά το κλείσιµο του διαλόγου
πατήστε [Pause] ή «Παύση εκτέλεσης» για να διακόψετε την εκτέλεσή του». Ο
µαθητής µπορεί να πατήσει το πλήκτρο τη παύσης και να διαπιστώσει ότι το
πρόγραµµα ανακυκλώνει τις εντολές που βρίσκονται µέσα στην «Όσο», χωρίς να
διαβάζει άλλα δεδοµένα. Μπορεί λοιπόν να συµπεράνει ότι πρέπει να βάλει την εντολή
«∆ιάβασε» µέσα στην εντολή «Όσο».
Μη αρχικοποιηµένη µεταβλητή. Ένα άλλο δύσκολο σηµείο είναι η κατανόηση της
έννοιας της µεταβλητής (Τζιµογιάννης & Κόµης, 2000). Ο µαθητής ξεκινά την
εκτέλεση του προγράµµατος και αυτή τη φορά η εκτέλεση σταµατάει αµέσως και
εµφανίζεται το µήνυµα λάθους «Το πρόγραµµα προσπάθησε να χρησιµοποιήσει την
τιµή της µεταβλητής «χ» χωρίς αυτή να έχει αρχικοποιηθεί». Πράγµατι, δεν µπορούµε
να γίνει έλεγχος αν το χ είναι διαφορετικό από το µηδέν αν δεν έχει αποδοθεί µία
συγκεκριµένη αρχική τιµή. Έτσι ο µαθητής µπορεί να γράψει την εντολή «χ ← 0» πάνω
από την εντολή «Όσο».

328 2η Πανελλήνια ∆ιηµερίδα µε διεθνή συµµετοχή «∆ιδακτική της Πληροφορικής»

Άπειρες εντολές «∆ιάβασε». Το πρόγραµµα φαίνεται να εκτελείται κανονικά, ο µαθητής
εισάγει κάποιους αριθµούς, ενώ κανένα µήνυµα λάθους δεν εµφανίζεται. Όταν όµως ο
µαθητής δώσει την τιµή «0» για τερµατισµό, παρατηρεί ότι το πρόγραµµα δεν
σταµατάει αλλά συνεχίζει να ζητάει κι άλλα δεδοµένα. Στο σηµείο αυτό ο µαθητής
µπορεί να κάνει βηµατική εκτέλεση και να παρατηρήσει ότι δίνοντας µία τιµή στην
εντολή «∆ιάβασε», αυτή καταστρέφει τον µετρητή. Έτσι µπορεί να καταλάβει ότι
χρειάζονται δύο µεταβλητές, µία ως µετρητής του πλήθους των αριθµών και µία για να
«κρατάει» τον αριθµό που διαβάστηκε.

Συµπεράσµατα
Συµπερασµατικά µπορούµε να πούµε ότι ο µαθητής χρησιµοποιώντας τον ∆ιερµηνευτή
έχει την δυνατότητα να ελέγξει την ορθότητα ενός προγράµµατος, και µάλιστα να
κατορθώσει να διορθώσει όλα τα συντακτικά λάθη και τουλάχιστον κάποια από τα
λογικά λάθη. Σε αυτό το σηµείο µπορούµε να παρατηρήσουµε ότι η βοήθεια που
προσφέρει ένα τέτοιο περιβάλλον βρίσκεται σε άµεση συνάρτηση µε τα µηνύµατα
λάθους. Θα µπορούσε να υλοποιηθεί ένα «έξυπνο» σύστηµα βοήθειας (context -
sensitive help) το οποίο να βοηθά αποτελεσµατικά το µαθητή στον εντοπισµό των
λογικών του λαθών.

Βιβλιογραφία
Rogalski, J. & Samurçay, R. (1990) Acquisition of programming knowledge and skills.
In J-M. Hoc, T.R.G. Green, D.J. Gilmore and R. Samurçay (Eds.) Psychology of
Programming, pp 157-174. London: Academic Press.
Κόµης B., ∆ιδακτική της Πληροφορικής, Εκδόσεις Ελληνικό Ανοικτό Πανεπιστήµιο,
Πάτρα 2001.
Πολίτης Π., Κόµης B., Η Πληροφορική ως βασικό µάθηµα της Γ' τάξης Τεχνολογικής
Κατεύθυνσης του Ενιαίου Λυκείου: αλγοριθµική έναντι προγραµµατιστικής
προσέγγισης, Βάση, Τεύχος 2.
Τζιµογιάννης Α. & Γεωργίου Β. (1999), Οι δυσκολίες µαθητών δευτεροβάθµιας
εκπαίδευσης στην εφαρµογή της δοµής ελέγχου για την ανάπτυξη αλγορίθµων.
Μία µελέτη περίπτωσης, Στο Α. Τζιµογιάννης (επιµ.). Πρακτικά Πανελλήνιου
Συνεδρίου «Πληροφορική και Εκπαίδευση», Σύλλογος Καθηγητών Πληροφορικής
Ηπείρου, 183-192.
Τζιµογιάννης Α., Κόµης Β., Η έννοια της µεταβλητής στον Προγραµµατισµό:
δυσκολίες και παρανοήσεις µαθητών του Ενιαίου Λυκείου, Κόµης Β. (επιµέλεια), 2ο
Πανελλήνιο Συνέδριο µε ∆ιεθνή Συµµετοχή «Οι Τεχνολογίες της Πληροφορίας και της
Επικοινωνίας στην Εκπαίδευση», Πανεπιστήµιο Πατρών, Πάτρα, Οκτώβριος 2000.
ΥΠΕΠΘ, Παιδαγωγικό Ινστιτούτο (1997), Ενιαίο Πλαίσιο Προγράµµατος Σπουδών
Πληροφορικής, Αθήνα.
ΥΠΕΠΘ, Παιδαγωγικό Ινστιτούτο (1998), Η Πληροφορική στο σχολείο, Αθήνα.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

