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Αλγόριθµοι και πολυπλοκότητα  
Προβλήµατα, αλγόριθµοι και τα όρια της υπολογισιµότητας 
Στις αρχές του αιώνα µας, ένας από τους µεγαλύτερους µαθηµατικούς, ο David Hilbert, 
στα πλαίσια της περίφηµης διάλεξής του στο ∆ιεθνές Συνέδριο Μαθηµατικών στο 
Παρίσι το 1900 αναφέρθηκε σε 23 ανοικτά προβλήµατα τα οποία θεωρούσε ως τα πιο 
σηµαντικά για εκείνη την εποχή. Το δέκατο από αυτά ρωτούσε εάν µπορούσε να βρεθεί 
µια διαδικασία που να απαντά στο εάν µία δοσµένη διοφαντική εξίσωση έχει λύση ή 
όχι. Αρκετά χρόνια µετά, το 1928, στο ∆ιεθνές Συνέδριο Μαθηµατικών στη Μπολόνια 
και ως συνέχεια της προηγούµενης διάλεξής του, έθετε το πρόβληµα του να βρεθεί 
διαδικασία που θα µπορούσε να ελέγχει εάν ένα µαθηµατικό (λογικό) σύστηµα, όπως 
είναι για παράδειγµα η Ευκλείδειος Γεωµετρία, είναι συνεπές, δηλαδή δεν εµπεριέχει 
αντιφάσεις. Είναι προφανές το πόσο χρήσιµη θα ήταν µια τέτοια διαδικασία, καθώς 
ένας µαθηµατικός που προτείνει ένα πολύπλοκο µαθηµατικό σύστηµα, το οποίο λόγω 
του όγκου των αξιωµάτων ή της πληθώρας των αποδεικτικών µεθόδων που περιέχει 
ξεφεύγει από την δυνατότητα ελέγχου από τον άνθρωπο, απλά θα τροφοδοτούσε (µε 
µια κατάλληλη αναπαράσταση) το µαθηµατικό του σύστηµα στη µηχανική διαδικασία 
και η διαδικασία θα απαντούσε στο ερώτηµα του αν το σύστηµα αυτό περικλείει 
αντιφάσεις. Ένα άλλο πρόβληµα που έθεσε ο Hilbert στη διάλεξή του το 1928 και που 
ήταν κατά κάποιον τρόπο γενίκευση του δέκατου προβλήµατος της διάλεξης του 1900, 
ήταν δοθέντος ενός µαθηµατικού συστήµατος να διαπιστωθεί εάν µια δοσµένη 
µαθηµατική πρόταση αποτελεί θεώρηµα του συστήµατος ή όχι, το περίφηµο 
Entscheidungsproblem. Ο Hilbert ήλπιζε ότι για τα παραπάνω προβλήµατα θα έπρεπε 
να υπήρχε κάποια διαδικασία που να τα απαντά µέσα σε πεπερασµένο αριθµό βηµάτων 
(περατοκρατική διαδικασία ή αλγόριθµος, όπως θα δούµε πιο κάτω). 
Το 1931, ο µαθητής του Hilbert και εξίσου µεγάλος µαθηµατικός Kurt Gödel, απέδειξε 
στην περίφηµη εργασία του [Go31] ότι, δυστυχώς δύο από τις πεποιθήσεις του Hilbert 
ήταν λανθασµένες. Πιο συγκεκριµένα, ο Gödel παρουσίασε µια µαθηµατική πρόταση 
στα πλαίσια του αξιωµατικού συστήµατος των φυσικών αριθµών (η πρώτη προσπάθεια 
αξιωµατοποίησης του συστήµατος των φυσικών αριθµών έγινε το 1910 από τους 
Whitehead και Russell, στο τρίτοµο έργο τους Principia Mathematica [WhRu10]) για 
την οποία δεν ήταν δυνατό να αποδειχθεί µε χρήση των αποδεικτικών µεθόδων του 
συστήµατος αυτού ούτε ότι είναι θεώρηµα ούτε ότι δεν είναι. Αυτή η µεγάλη 
ανακάλυψη, είναι το περίφηµο θεώρηµα µη πληρότητας του Gödel. Επιπλέον, ο Gödel 
απέδειξε ότι η συνέπεια ενός µαθηµατικού συστήµατος δεν είναι δυνατόν να αποδειχθεί 
µε κανόνες και µεθόδους του ίδιου του συστήµατος. 
Το 1936 ο Alan Turing γινόταν ο θεµελιωτής της επιστήµης των υπολογιστών, µε την 
ιστορική εργασία του “On computable numbers, with an application to the 
Entscheidungsproblem” ([Tu36]). Στην εργασία αυτή ο Turing όρισε ένα υπολογιστικό 
µοντέλο, που ονοµάστηκε µετά προς τιµή του Μηχανή Turing (Turing Machine) το 
οποίο δεν είναι τίποτε άλλο παρά µια αφαιρετική περιγραφή, ένα µοντέλο, της έννοιας 
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της αλγοριθµικής υπολογισιµότητας και του ηλεκτρονικού υπολογιστή όπως τον 
ξέρουµε σήµερα (δείτε Ενότητα 2). Επιπλέον, απαντώντας αρνητικά και στο τρίτο 
πρόβληµα του Hilbert, Entscheidungsproblem, απέδειξε ότι το πρόβληµα του εάν µια 
Μηχανή Turing τερµατίζει για µια δοσµενη είσοδο, είναι µη αλγοριθµικά αποφασίσιµο. 
Με άλλα λόγια, δεν υπάρχει αλγόριθµος (Μηχανή Turing δηλαδή) που να δέχεται ως 
είσοδο την περιγραφή της µηχανής και της εισόδου της και να αποφασίζει αν κάποτε θα 
σταµατήσει η µηχανή. (∆ύο πολύ καλές αναφορές για όλα τα παραπάνω,  είναι τα 
βιβλία των Davis [Da58] και van Heijenoort [vanHe67].) 
Η συνεισφορά του Turing ήταν διπλή. Κατ' αρχήν συµπλήρωσε το αποτέλεσµα του 
Gödel. Παρεκκλίνοντας λίγο, στην πραγµατικότητα, η απόδειξη του Turing ήταν µια 
απλούστερη έκδοση της απόδειξης µη πληρότητας του Gödel. Όµως, ο Turing είχε το 
πλεονέκτηµα ότι εργαζόταν σε ένα µαθηµατικό σύστηµα που διευκόλυνε το έργο της 
επίδειξης µιας πρότασης για την οποία δεν υπάρχει αλγόριθµος που να αποφασίζει εάν 
είναι θεώρηµα ή όχι. Η πρόταση, όπως είπαµε, είναι η εξής: Η µηχανή Turing M 
τερµατίζει κάποτε µε είσοδο τη συµβολοσειρά x; Ο Gödel, από την άλλη µεριά, είχε το 
µειονέκτηµα ότι εργαζόταν σε ένα κάπως δύσκαµπτο φορµαλισµό, αυτόν των 
αναδροµικών συναρτήσεων, και έπρεπε να εφεύρει, κατά κάποιον τρόπο, µία µέθοδο 
γραφής µαθηµατικών προτάσεων µε χρήση απλά και µόνο αναδροµικών συναρτήσεων 
σε φυσικούς αριθµούς. Εάν προσέξει κανείς την απόδειξή του, θα διαπιστώσει ότι, πριν 
επιδείξει την περίφηµη αυτοαναφερόµενη πρόταση που δεν µπορεί να αποδειχθεί εάν 
είναι θεώρηµα ή όχι, χτίζει βήµα-βήµα µια µηχανή, που προσοµοιάζει το µηχανισµό 
υπολογισµού της γνωστής συναρτησιακής γλώσσας προγραµµατισµού Lisp. Αυτή είναι 
και η οµορφιά της απόδειξης του. Επανερχόµενοι όµως στην επόµενη συνεισφορά του 
Turing, η οποία είχε µεγάλη επίδραση στη µετέπειτα πορεία της επιστήµης των 
υπολογιστών, µέσα από τη χρησιµοποίηση της µηχανής που πρότεινε για την 
περιγραφή αλγόριθµων για διάφορα προβλήµατα, υπήρξε η συνειδητοποίηση ότι πέρα 
από τη διαπίστωση ότι ένα πρόβληµα είναι επιλύσιµο (µε το να επιδείξουµε έναν 
αλγόριθµο, ή µηχανή Turing, που να το επιλύει) µας ενδιαφέρει η επίλυση να γίνεται 
όσο το δυνατόν γρηγορότερα. 
Ο πρώτος που διερεύνησε ζητήµατα σχετικά µε την πολυπλοκότητα της αλγοριθµικής 
επίλυσης προβληµάτων, ήταν ο ίδιος ο Gödel το 1956, πάλι σε σχέση µε απόδειξη 
θεωρηµάτων στα πλαίσια αξιωµατικών συστηµάτων. Με ένα γράµµα του προς τον John 
von Neumann, ο Gödel αναρωτιέται σχετικά µε την πολυπλοκότητα εύρεσης 
αποδείξεων σε θεωρήµατα που είναι διατυπωµένα µε βάση τους κανόνες ενός τυπικού 
συστήµατος (για µια αναφορά σε αυτό το γεγονός, δείτε την εργασία του Juris 
Hartmanis [Har89] καθώς και την τεχνική αναφορά [ChHa94]). Πιο συγκεκριµένα, 
αναφέρεται στη µηχανή Turing ως υπολογιστικό µοντέλο, και µετά ρωτά ποια είναι η 
συνάρτηση που φράσσει τον αριθµό των βηµάτων που χρειάζονται για να βρεθούν 
αποδείξεις µήκους n. Στην πραγµατικότητα ο Gödel ρωτούσε τον von Neumann, 
σύµφωνα µε τη σηµερινή τεχνική ορολογία, για την ντετερµινιστική (deterministic) 
υπολογιστική πολυπλοκότητα του προβλήµατος της απόδειξης θεωρηµάτων (theorem 
proving). Στο ίδιο γράµµα, ο Gödel επίσης ρωτάει σχετικά µε την υπολογιστική 
πολυπλοκότητα του ελέγχου εάν ένας φυσικός αριθµός είναι πρώτος (primality testing), 
και µας εκπλήσσει κάπως το γεγονός ότι εκφράζει την πεποίθηση ότι η απόδειξη 
θεωρηµάτων δεν πρέπει να είναι και τόσο δύσκολο πρόβληµα υπολογιστικά. ∆υστυχώς, 
ο von Neumann ήδη έπασχε από καρκίνο και πέθανε ένα χρόνο αργότερα. Ποτέ δεν 
υπήρξε απάντηση στο γράµµα, και φαίνεται ότι ο Gödel δεν προσπάθησε να 
διερευνήσει περισσότερο το πολύ σηµαντικό ερώτηµα που έθεσε. 
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Γρήγορα Επιλύσιµα Προβλήµατα: η κλάση P και η πρακτική υπολογισιµότητα 
Πριν ορίσουµε τις βασικές έννοιες υπολογιστικής πολυπλοκότητας θα δώσουµε µία 
σύντοµη περιγραφή της µηχανής Turing (δείτε Σχήµα 1). Μια µηχανή Turing 
αποτελείται από ένα πεπερασµένο µηχανισµό ο οποίος βρίσκεται πάντα σε κάποια 
κατάσταση ανάλογα µε την πορεία των υπολογισµών, µια απεριόριστου µήκους ταινία 
διαιρεµένη σε κελιά, και µια κεφαλή ανάγνωσης των κελιών η οποία µπορεί να 
διαβάζει τα περιεχόµενα ενός κελιού κάθε φορά. Η ταινία έχει όριο προς τα αριστερά, 
ενώ εκτείνεται στο άπειρο προς τα δεξιά. Σε κάθε ένα από τα κελιά µπορεί να βρίσκεται 
ένα σύµβολο µέσα από ένα πεπερασµένο αριθµό συµβόλων που αποτελούν το 
αλφάβητο της ταινίας της µηχανής. Για να ξεκινήσει ο υπολογισµός, ένας αριθµός από 
τα πρώτα συνεχόµενα κελιά περιέχει στην αρχή την είσοδο της µηχανής η οποία 
αποτελείται από σύµβολα µέσα από το αλφάβητο εισόδου της µηχανής. 
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Σχήµα 1: Μία µηχανή Turing n καταστάσεων που ετοιµάζεται να µεταβεί στην κατάσταση q2, 

γράφοντας στη θέση του 0 το 1 και µεταφέροντας την κεφαλή µία θέση δεξιά 

Σε κάθε βήµα, µια µηχανή Turing µπορεί να κάνει κάτι από τα ακόλουθα: (α) να 
αλλάξει εσωτερική κατάσταση (β) να αλλάξει το σύµβολο το οποίο βρίσκεται στο κελί 
που διαβάζει η κεφαλή ή (γ) να µετακινήσει την κεφαλή δεξιά ή αριστερά κατά ένα 
κελί. Όπως έχουµε ήδη πει, αυτό το τόσο απλό µοντέλο είναι γενικά αποδεκτό ότι 
µπορεί να υπολογίσει κάθε τι που µπορεί να υπολογιστεί αλγοριθµικά (η περίφηµη 
υπόθεση του Church) και είναι ισοδύναµο ως προς το τι µπορεί να υπολογιστεί µε τον 
ηλεκτρονικό υπολογιστή µας.  
Ας επανέλθουµε όµως στο ζήτηµα του πόσο χρόνο µπορεί να χρειαστεί µια µηχανή 
Turing για να επιλύσει ένα πρόβληµα. Όπως είδαµε, πρώτος Gödel έθεσε αυτό το 
ερώτηµα, χωρίς όµως να το διερευνήσει περισσότερο. Μέσα στο διάστηµα 1965-1967, 
ο J. Edmonds σε δύο εργασίες του, χρησιµοποίησε για πρώτη φορά την έννοια καλός 
(αποδοτικός) αλγόριθµος για εκείνους τους αλγόριθµους (µηχανές Turing) που για να 
επιλύσουν ένα στιγµιότυπο µεγέθους n, χρειάζονται το πολύ cnk  βήµατα, για κάποιους 
αριθµούς c, k. 
Γρήγορα έγινε αποδεκτό, µε βάση διάφορα πειστικά επιχειρήµατα που µπορεί κανείς να 
βρει αναλυτικά στα βιβλία [Papa94] και [HoUl79], ότι τα προβλήµατα που θα πρέπει να 
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θεωρούνται γρήγορα επιλύσιµα είναι η κλάση όλων των προβληµάτων για τα οποία 
υπάρχει αλγόριθµος (µηχανή Turing) που τα επιλύει χρησιµοποιώντας πολυωνυµικό 
αριθµό βηµάτων στο µέγεθος του στιγµιότυπου. Ένα από τα ισχυρότερα επιχειρήµατα 
είναι το ότι για κάθε ρεαλιστικό µοντέλο υπολογισµού M, εάν ένας αλγόριθµος είναι 
πολυωνυµικού χρόνου για µια µηχανή Turing, τότε ο αλγόριθµος θα είναι 
πολυωνυµικού χρόνου ακόµα και αν περιγραφτεί στα πλαίσια των κανόνων του 
µοντέλου M και αντίστροφα. Με άλλα λόγια, η ιδιότητα της επιλυσιµότητας ενός 
προβλήµατος γρήγορα (δηλαδή σε πολυωνυµικό αριθµό στοιχειωδών βηµάτων) είναι 
µία αµετάβλητη ιδιότητα µέσα στην κλάση όλων των ρεαλιστικών µοντέλων της έννοιας 
της µηχανικής υπολογισιµότητας. 
Ο Edmonds είχε σωστή διαίσθηση όσον αφορά το τι πρέπει να είναι καλός αλγόριθµος, 
και είχε εντοπίσει προβλήµατα που επιδέχονται τέτοιους αλγορίθµους, Όµως για ένα 
συγκεκριµένο πρόβληµα, το Πρόβληµα του Περιπλανώµενου Πωλητή (Traveling 
Salesman Problem ή TSP) δεν είχε  καταφέρει να βρει έναν καλό αλγόριθµο. Πριν όµως 
ορίσουµε το πρόβληµα αυτό θα εξετάσουµε κάποιο άλλο. Έστω ότι δίνεται ένας χάρτης 
µιας χώρας µε συνδέσεις µεταξύ των πόλεων µε δρόµους και δύο συγκεκριµένες πόλεις 
A και B (Σχήµα 2).  

 

Β

Α 

Σχήµα 2: Ένα οδικό δίκτυο πόλεων και µία σύνδεση µεταξύ των πόλεων Α και Β 

Το πρόβληµα που τίθεται είναι εάν το δίκτυο επιτρέπει τη σύνδεσή τους, έστω και µέσα 
από άλλες πόλεις (ας καλέσουµε το πρόβληµα αυτό PATH). Αυτό είναι σηµαντικό 
πρόβληµα καθώς εάν το προτεινόµενο δίκτυο δεν επιτρέπει τη σύνδεση κάποιων 
πόλεων τότε είναι λανθασµένο και θα πρέπει να επανασχεδιαστεί. Το πρόβληµα αυτό 
έχει µια απλή και γρήγορη µηχανική λύση που φαίνεται στο Σχήµα 3. Μια πρόχειρη 
ανάλυση µας δείχνει ότι ο αλγόριθµος τερµατίζει µετά από το πολύ n2 βήµατα για κάθε 
χάρτη µε n πόλεις. 

(Έχοντας ξεκινήσει από την πόλη Α)
Μέχρι να φτάσεις στην πόλη Β κάνε ένα από τα εξής τρία βήµατα: 

 Εάν βρίσκεσαι στην πόλη Α και δεν υπάρχει δρόµος που να µην έχεις ακολουθήσει 
ξανά, τερµάτισε και δήλωσε ότι οι πόλεις Α και Β δεν συνδέονται µεταξύ τους. 

 Από την πόλη που βρίσκεσαι, κοίταξε όλους του δρόµους που φεύγουν από αυτήν και 
ακολούθησε κάποιο δρόµο που δεν έχεις ακολουθήσει παλαιότερα. 

 Εάν όµως έχεις ακολουθήσει κάποτε όλους τους δρόµους που φεύγουν από την 
τρέχουσα πόλη γύρισε πίσω σε µία πόλη που είχες επισκεφτεί πιο πριν ακολουθώντας 
προς τα πίσω το δρόµο από τον οποίο πρωτοεπισκεύτηκες την τρέχουσα πόλη. 

∆ήλωσε ότι οι πόλεις Α και Β συνδέονται µεταξύ τους. 

Σχήµα 3: Ένας αλγόριθµος ελέγχου σύνδεσης µεταξύ των πόλεων Α και Β (πρόβληµα PATH) 
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Επίσης, βλέπουµε ότι η παραπάνω λύση αποτελείται από στοιχειώδη και εύκολα 
υλοποιήσιµα βήµατα, µπορεί να εκτελεστεί εντελώς µηχανικά δοσµένου του χάρτη της 
χώρας µε το οδικό δίκτυο, και πάντοτε τερµατίζει δίνοντας τη σωστή απάντηση, δηλαδή 
είναι ένας αλγόριθµος. Στο Σχήµα 3 βλέπουµε µία πιθανή εύρεση διασύνδεσης µεταξύ 
των Α και Β. 
Ας αλλάξουµε όµως λίγο το πρόβληµα έτσι ώστε να µην µας ενδιαφέρει απλά και µόνο 
η σύνδεση των δύο πόλεων µέσα από το οδικό δίκτυο αλλά να µας ενδιαφέρει 
επιπρόσθετα να συνδέονται µε κάποια διαδροµή η οποία να περνά ακριβώς µία φορά 
από όλες τις υπόλοιπες πόλεις. Αυτό είναι και το πρόβληµα του Πρόβληµα του 
Περιπλανώµενου Πωλητή (Traveling Salesman Problem – TSP). Κάποιος αµέσως θα 
σκεφτόταν να εφαρµόσει µια παραλλαγή του αλγόριθµου στο Σχήµα 2 και σε αυτό το 
πρόβληµα. Επίσης, θα περίµενε κανείς και το καινούριο πρόβληµα να είναι επιλύσιµο 
σε περίπου τον ίδιο αριθµό βηµάτων. Μοιάζουν τόσο, εξάλλου, τα δύο προβλήµατα. Τα 
πράγµατα είναι όµως πολύ διαφορετικά! Πραγµατικά, µπορούµε να εφαρµόσουµε έναν 
αλγόριθµο όπως ο παραπάνω που απλά θα ξεκινά από την A και θα ακολουθεί τους 
δρόµους µέχρι να βρει την B, κρατώντας κάθε φορά µία σηµείωση των πόλεων που έχει 
επισκεφτεί. Εάν από µία πόλη µπορεί να επισκεφτεί µόνο πόλεις που έχει ήδη 
επισκεφτεί, τότε ο αλγόριθµος µπορεί π.χ. να επιστρέψει σε µία προηγούµενη πόλη και 
να ακολουθήσει κάποιον άλλο δρόµο ελπίζοντας αυτή τη φορά να βρει τη ζητούµενη 
διαδροµή. Εάν µελετήσουµε τον αριθµό των βηµάτων αυτού του αλγόριθµου, θα δούµε 
ότι µάλλον δεν είναι και τόσο µικρός! Ο αλγόριθµος αυτός µπορεί να εξερευνά 
διαδροµές που ξαφνικά διαπιστώνεται ότι δεν µπορεί να αποτελούν µέρος µίας 
καθολικής διαδροµής που περνά από όλες τις πόλεις. Και τότε ο αλγόριθµος θα πρέπει 
να ψάξει για άλλη διαδροµή. Μία προσεκτική ανάλυση του αλγόριθµου που 
προτείναµε, αποκαλύπτει ότι για έναν χάρτη µε n πόλεις, ο αριθµός των βηµάτων στη 
χειρότερη περίπτωση µπορεί να φθάσει, χονδρικά, µέχρι nn.Ακόµη και µε τους 
ταχύτερους υπολογιστές στον κόσµο σήµερα, για έναν χάρτη 1000 πόλεων, θα 
χρειαστούν πάρα πολλά χρόνια υπολογισµού για να βρεθεί το πολυπόθητο µονοπάτι! 
Στο Σχήµα 4 βλέπουµε ποια αποτελέσµατα έχει η τεχνολογία όσον αφορά το πόσο 
µεγάλα στιγµιότυπα µπορούν να επιλυθούν σε µία ώρα (δείτε [GaJo79]). 
 
Χρόνος τρεξίµατος 

αλγόριθµου 
Μέγιστο µέγεθος 
στιγµιότυπου µε 

σηµερινή 
τεχνολογία 

100 φορές πιο 
γρήγορη 
τεχνολογία 

1000 φορές πιο 
γρήγορη 
τεχνολογία 

N N1 100N1 1000N1
n2 N2 10N2 31.6N2
n3 N3 4.64N3 10N3
n5 N4 2.5N4 3.98N4
2n N5 6.64+N5 9.97+N5
3n N6 4.19+N6 6.29+N6

Σχήµα 4: Το µεγαλύτερο στιγµιότυπο που επιλύεται µέσα σε µία ώρα 
Ίσως όµως, να σκεφτεί κανείς, να υπάρχει κάποιος καλύτερος αλγόριθµος. Αρκεί κανείς 
να σκεφτεί πιο προσεκτικά. Όµως ο Edmonds, όπως και πολλοί άλλοι µετέπειτα, δεν 
είχε κατορθώσει να βρει ένα γρήγορο αλγόριθµο γι’ αυτό το πρόβληµα και αµέσως 
διατύπωσε την εικασία ότι µάλλον δεν πρέπει να υπάρχει πολυωνυµικός αλγόριθµος γι' 
αυτό το πρόβληµα. Όµως, µια άλλη σηµαντική παρατήρηση, µε δεδοµένο ότι το 
πρόβληµα δεν φαινόταν να επιλύεται από πολυωνυµικό αλγόριθµο, ήταν ότι εάν µας 
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δοθεί µια διαδροµή που κάποιος ισχυρίζεται ότι είναι λύση ενός στιγµιότυπου του TSP, 
τότε είναι εύκολο υπολογιστικά να ελέγξουµε γρήγορα (δηλαδή σε πολυωνυµικό αριθµό 
βηµάτων) ότι πράγµατι αυτή η διαδροµή είναι η επιθυµητή. Η κλάση, λοιπόν, των 
προβληµάτων που έχουν αυτή την ιδιότητα ονοµάστηκε NP (συνήθως ο ορισµός δίνεται 
µε βάση τις µη ντετερµινιστικές µηχανές Turing αλλά, για απλούστευση, αποφύγαµε να 
χρησιµοποιήσουµε το φορµαλισµό αυτών των µηχανών). Προσέξτε, επίσης, ότι η 
κλάση P είναι υποσύνολο της κλάσης NP, δηλαδή P ⊆ NP, χωρίς µέχρι σήµερα να έχει 
αποδειχθεί (αποτελεί σηµαντικό ανοικτό πρόβληµα της θεωρίας της πολυπλοκότητας) 
εάν η σχέση υποσυνόλου είναι γνήσια (δηλαδή εάν P ≠ NP).  
Οι ερευνητές, λοιπόν, είχαν στα χέρια τους προβλήµατα για τα οποία είχαν ήδη βρει 
πολυωνυµικούς αλγορίθµους επίλυσης, και προβλήµατα που αν και δεν διαφαινόταν 
εάν µπορούσαν να επιλυθούν από πολυωνυµικό αλγόριθµο ή όχι, παρόλα αυτά, εάν 
παρεχόταν µια υποψήφια λύση, υπήρχε πολυωνυµικός αλγόριθµος που να ελέγχει εάν 
πράγµατι αυτή είναι λύση ή όχι. Η επόµενη σκέψη ήταν να βρεθούν εκείνα τα 
προβλήµατα αυτής της κλάσης που πρέπει να είναι τα πιο δύσκολα να επιλυθούν 
δηλαδή αυτά που αντιπροσωπεύουν τη δυσκολία όλης της κλάσης µε την έννοια ότι εάν 
µπορούσαµε να λύναµε πολυωνυµικά ένα από αυτά, θα λύναµε πάλι πολυωνυµικά όλα 
τα προβλήµατα του NP. Έτσι γεννήθηκε η έννοια της αναγωγής πολυωνυµικού χρόνου 
από ένα πρόβληµα σε ένα άλλο. Σύµφωνα µε αυτή την έννοια, για να δείξουµε ότι ένα 
πρόβληµα είναι τουλάχιστον τόσο δύσκολο όσο ένα άλλο όσον αφορά την επίλυση µε 
πολυωνυµικό αλγόριθµο, αρκεί να βρούµε µια απεικόνιση στιγµιότυπων του πρώτου σε 
στιγµιότυπα του δευτέρου που γρήγορα, έτσι ώστε µια λύση στο δεύτερο πρόβληµα να 
αντιστοιχεί σε µία λύση του πρώτου. Έτσι, δείχνουµε ότι το δεύτερο πρόβληµα δεν 
µπορεί να είναι πιο εύκολο να λυθεί από το πρώτο. Τα προβλήµατα που ανήκουν στο 
NP και έχουν αυτή την ιδιότητα καλούνται πλήρη ως προς την κλάση NP (NP-
complete).  
Το πρώτο πρόβληµα που βρέθηκε να έχει αυτή την ιδιότητα, είναι το πρόβληµα  της 
ικανοποιησιµότητας λογικών προτάσεων (SATISFIABILITY ή SAT) και η σηµαντική 
αυτή ανακάλυψη, γνωστή ως Θεώρηµα Cook-Levin, έγινε ανεξάρτητα στις αρχές της 
δεκαετίας του ’70 στις πρωτοποριακές εργασίες των Stephen Cook [Cook71], Richard 
Karp [Karp72], και Leonid Levin [Levin73]. Την ανακάλυψη αυτή, ακολούθησαν 
πλήθος δηµοσιεύσεων όπου µια πληθώρα άλλων προβληµάτων βρέθηκαν να είναι 
πλήρη ως προς την κλάση NP ([GaJo79]). Το θεµελιώδες ερώτηµα,, που παραµένει 
βασανιστικά αναπάντητο, είναι το εάν ισχύει P=NP, µε την επιστηµονική κοινότητα να 
συγκλίνει στο ότι κάτι τέτοιο δεν ισχύει. Στο Σχήµα 5 βλέπουµε την πρωταρχική 
κατάταξη των προβληµάτων ανάλογα µε την ευκολία επίλυσής τους. 
 
 

SAT, TSP 
PATH 

P⊆NP: γρήγορα επιλύσιµα προβλήµατα 

NP: περιέχει δύσκολα προβλήµατα;  
 
 
 
 
 

Σχήµα 5: Η εικόνα των προβληµάτων σε σχέση µε την πολυπλοκότητα επίλυσής τους 

Eρευνητικές κατευθύνσεις 
Μέσα από τις προσπάθειες που περιγράψαµε προηγουµένως γεννήθηκε, και σήµερα 
έχει πια ωριµάσει, η Θεωρία Πολυπλοκότητας. Η θεωρία αυτή εξετάζει τα διάφορα 
προβλήµατα ως προς το πόσο γρήγορα µπορούν να επιλυθούν και µία από τις 
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µεγαλύτερες επιτυχίες της είναι η κατάταξή τους σε δύο µεγάλες κατηγορίες. Στην 
πρώτη ανήκουν τα προβλήµατα για τα οποία έχει ήδη βρεθεί κάποιος γρήγορος 
αλγόριθµος που για στιγµιότυπα (π.χ. όπως ο χάρτης) µεγέθους n (ο αριθµός των 
πόλεων του χάρτη) απαιτούνται το πολύ n2, n3 ή, γενικά, nk βήµατα, για κάποιο σταθερό 
αριθµό k. Τα προβλήµατα αυτά καλούνται προβλήµατα επιλύσιµα σε πολυωνυµικό 
χρόνο (λόγω της µορφής, πολυώνυµο, που έχει η έκφραση για τον αριθµό βηµάτων) και 
αποτελούν την περίφηµη κλάση P. H δεύτερη κατηγορία συµπεριλαµβάνει προβλήµατα 
όπως το TSP που είναι από τα δυσκολότερα προβλήµατα του NP και για τα οποία µέχρι 
τώρα δεν έχει βρεθεί γρήγορος αλγόριθµος, ενώ οι ταχύτεροι αλγόριθµοι που έχουν 
προταθεί απαιτούν αριθµό βηµάτων της µορφής 2n, 3n ή ακόµα και nn, δηλαδή εκθετικά 
πολλά βήµατα. Τα προβλήµατα αυτά αποτελούν την περίφηµη κλάση των NP πλήρων 
προβληµάτων, των πιο δύσκολων στο NP. Αυτό που πρέπει να έχουµε κατά νου είναι 
ότι αν και µέχρι σήµερα κανείς δεν έχει αποδείξει ότι γι’ αυτά τα προβλήµατα 
πραγµατικά δεν υπάρχουν γρήγοροι αλγόριθµοι, η Θεωρία της Πολυπλοκότητας, µέσα 
από µια µαθηµατικά θεµελιωµένη µεθοδολογία και επιχειρηµατολογία, δίνει πειστήρια 
για το ότι δεν µπορεί να υπάρχουν τέτοιοι αλγόριθµοι. 
Όµως η έννοια της πολυπλοκότητας δεν περιορίζεται µόνο στη µελέτη της χειρότερης 
περίπτωσης για την επίλυση των στιγµιότυπων ενός προβλήµατος. Σχετικά µε άλλες 
θεωρήσεις της έννοιας αυτής, ο Andrei Kolmogorov, ο Ray Solomonoff, και ο Gregory 
Chaitin πρότειναν, ανεξάρτητα ([Kolm65,Sol64,Chaitin66]) την έννοια της 
περιγραφικής πολυπλοκότητας ή, όπως λέγεται, Kolmogorov complexity. Ας 
θεωρήσουµε τις συµβολοσειρές 000000000000000 και 010100001110001 των 15 bits. 
Υπό το πρίσµα της κλασσικής θεωρίας πιθανοτήτων, οι δύο αυτές συµβολοσειρές έχουν 
την ίδια πιθανότητα εµφάνισης σε ένα πείραµα ρίψης ενός δίκαιου νοµίσµατος: (½)15. 
Όµως, η συµβολοσειρά 000000000000000 µπορεί εύκολα να περιγραφεί από την 
έκφραση 20 µηδενικά ενώ η 010100001110001 δεν φαίνεται να επιτρέπει µια σύντοµη 
περιγραφή της. Η πρώτη συµβολοσειρά έχει χαµηλή περιγραφική πολυπλοκότητα ενώ 
η δεύτερη υψηλή. Υπάρχει σειρά θεωρητικών αποτελεσµάτων (π.χ. [OSW94]) που 
δείχνει ότι στιγµιότυπα που κωδικοποιούνται µε συµβολοσειρές υψηλής περιγραφικής 
πολυπλοκότητας, αποτελούν δύσκολα στιγµιότυπα των αντίστοιχων υπολογιστικών 
προβληµάτων. 
Το 1986 ο Leonid Levin ήταν ο επινοητής της έννοιας της πολυπλοκότητας µέσης 
περίπτωσης (average case complexity) προβληµάτων στην πρωτοποριακή του εργασία 
[Levin86]. Σε αντιστοιχία µε την NP-πληρότητα, ο Levin όρισε την πληρότητα ως προς 
µέση περίπτωση η οποία µέσα από κατάλληλες αναγωγές µεταξύ προβληµάτων, που 
όµως λαµβάνουν υπόψη την πιθανοτική κατανοµή των στιγµιότυπων (ώστε να υπάρχει 
η έννοια της µέσης περίπτωσης), διακρίνει µεταξύ δύσκολων προβληµάτων που είναι 
εύκολα στη µέση περίπτωση και δύσκολων προβληµάτων που παραµένουν δύσκολα 
και στη µέση περίπτωση (δείτε την ανάλυση [LeVe] για την ανάλυση µέσης 
πολυπλοκότητας µιας έκδοσης του προβλήµατος χρωµατισµού γραφήµατος). Επίσης, 
δείτε τις εργασίες [Aj96,AjDw97] όπου για την πρώτη ανάλυση προβλήµατος το οποίο 
έχει την ιδιότητα η πολυπλοκότητα µέσης περίπτωσης να ισούται µε την 
πολυπλοκότητα χειρότερης περίπτωσης. 
Μια άλλη όψη της πολυπλοκότητας διαφάνηκε το 1991 όταν οι Cheeseman, Taylor και 
Kanefsky  πραγµατοποιήθηκε σειρά πειραµάτων µε το πρόβληµα του χρωµατισµού 
γραφηµάτων µε 3 χρώµατα.  Το πρόβληµα  αυτό  αναφέρεται σε µία δοµή που  
αποτελείται  από n κόµβους κάποιοι  από  τους  οποίους συνδέονται µέσω m 
συνδέσµων. Ζητείται χρωµατισµός των κόµβων  µε χρήση τριών, το πολύ, 
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διαφορετικών χρωµάτων έτσι ώστε κόµβοι που συνδέονται µεταξύ τους να έχουν 
διαφορετικό χρώµα (3-COLORING). Το πρόβληµα  αυτό ανήκει  στην  πολύ 
σηµαντική οικογένεια των NP-πλήρων προβληµάτων  για τα οποία συζητήσαµε πιο 
πάνω. Το φαινόµενο  που παρατηρήθηκε στα πειράµατα ήταν το εξής: σε γραφήµατα 

στα οποία  ο λόγος 
n
m

0r

0r m

r =  βρισκόταν γύρω από µία συγκεκριµένη τιµή  (που 

εκτιµήθηκε πειραµατικά), οι αλγόριθµοι που χρησιµοποιήθηκαν για τον χρωµατισµό 
αυτών των γραφηµάτων δυσκολεύονταν στο να βρούν µία κατάλληλη ανάθεση 
χρωµάτων. Όµως για γραφήµατα που ο  λόγος αποµακρυνόταν από την τιµή αυτή, οι 
αλγόριθµοι τερµάτιζαν  γρήγορα. Επίσης, όταν ο λόγος αποµακρυνόταν προς  τα  κάτω 
από  την  τιµή , τότε σχεδόν όλα τα γραφήµατα µε n κόµβους και συνδέσεις είχαν 

κάποιο χρωµατισµό µε τρία χρώµατα  ενώ για  λόγους πάνω από την τιµή , σχεδόν 
κανένα γράφηµα δεν είχε χρωµατισµό. Το  φαινόµενο αυτό ονοµάζεται αλλαγή φάσης ή 
κατάστασης καθώς τα γραφήµατα µπορούν είτε να χρωµατίζονται µε  τρία  χρώµατα (η 
µία φάση) είτε να µην χρωµατίζονται  (η άλλη  φάση) και η  µετάβαση  από  τη  µία  
στην  άλλη κατάσταση συµβαίνει απότοµα, όταν ο λόγος των δύο παραµέτρων που  
καθορίζουν ένα γράφηµα (οι συνδέσεις και οι κόµβοι) διασχίζει την τιµή . 

∆ιαφαίνεται, ότι  γύρω  από  την τιµή  (κατώφλι) συγκεντρώνονται  «δύσκολα»  
γραφήµατα, που προσδίδουν στο πρόβληµα του χρωµατισµού γραφηµάτων µε τρία 
χρώµατα το χαρακτηριστικό του δύσκολα επιλύσιµου (NP-πλήρους) προβλήµατος. 
Παρόµοια αποτελέσµατα παρατηρήθηκαν και για το πρόβληµα της ικανοποιησιµότητας 
λογικών τύπων 3-SAT m προτάσεων πάνω σε n λογικές µεταβλητές όπου έχουµε τρεις 
εµφανίσεις µεταβλητών ή των συµπληρωµάτων τους σε κάθε πρόταση (δείτε την 
εργασία [Stam03] για µα επισκόπηση των φαινοµένων αλλαγής φάσης). 

0r

0r

0r

Οι νέες εξελίξεις στην Τεχνολογία και οι νέες προκλήσεις  
Σήµερα, το ∆ιαδίκτυο και ο Παγκόσµιος Ιστός (www) αποτελούν στην πράξη µια 
παγκόσµια Μηχανή, µε άφθονη εγκατεσπαρµένη πληροφορία και υπέροχες 
δυνατότητες άντλησής της και Επικοινωνίας.  
Ταυτόχρονα, οι κινητές επικοινωνίες (mobile communications & computing) 
επεκτείνουν τον Ιστό προσθέτοντας δυναµικά, τοπικά δίκτυα ανταλλαγής 
Πληροφορίας.  
Το όραµα της Ευρωπαϊκής Ένωσης για ∆ιάχυτη Νοηµοσύνη (Ambient Intelligence) 
είναι πλέον κοντά στην υλοποίηση του.  
Τέλος, οι Κβαντικοί Υπολογιστές δείχνουν κάποιες θεωρητικές ελπίδες για άρση των 
φραγµάτων Πολυπλοκότητας.  
Απέναντι στις προκλήσεις αυτές, υπάρχει ανάγκη επέκτασης των θεµελιώσεων. Η 
προσπάθεια ήδη γίνεται και αναµένονται ενδιαφέροντα συµπεράσµατα.     
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