

 Συνέδρια της Ελληνικής Επιστημονικής Ένωσης Τεχνολογιών Πληροφορίας
& Επικοινωνιών στην Εκπαίδευση

 Τόμ. 1 (2023)

 13ο Πανελλήνιο και Διεθνές Συνέδριο «Οι ΤΠΕ στην Εκπαίδευση»

 Assessment of JAVA code quality: Examining the
efficacy of an automated tool as a teacher’s
assistant

 Dimitrios Margounakis, Dimitrios Sofronas, Maria Rigou,
Theodore Pachidis

Βιβλιογραφική αναφορά:

Margounakis, D., Sofronas, D., Rigou, M., & Pachidis, T. (2024). Assessment of JAVA code quality: Examining the
efficacy of an automated tool as a teacher’s assistant. Συνέδρια της Ελληνικής Επιστημονικής Ένωσης
Τεχνολογιών Πληροφορίας & Επικοινωνιών στην Εκπαίδευση, 1, 195–202. ανακτήθηκε από
https://eproceedings.epublishing.ekt.gr/index.php/cetpe/article/view/7268

Powered by TCPDF (www.tcpdf.org)

https://epublishing.ekt.gr | e-Εκδότης: EKT | Πρόσβαση: 21/01/2026 08:20:24

I. Kazanidis, A. Tsinakos (Eds.), Proceedings of the 13th Pan-Hellenic and International Conference “ICT in Education”, International
Hellenic University, Kavala. Greece, 29 September – 1 October 2023. ISSN: 2529-0916, ISBN: 978-618-83186-8-7

Assessment of JAVA code quality: Examining the
efficacy of an automated tool as a teacher’s assistant

Dimitrios Margounakis1, Dimitrios Sofronas2, Maria Rigou2, Theodore Pachidis3
dmargoun@sw.duth.gr, std131050@ac.eap.gr, rigkou.maria@ac.eap.gr, pated@cs.ihu.gr

1 Democritus University of Thrace, Komotini, Greece
2 Hellenic Open University, Patras, Greece

3 International Hellenic University, Kavala, Greece

Abstract

Several contemporary software tools are available for measuring a range of object-oriented software
quality metrics. In this study, we examine the efficacy of our automated tool, SQMetrics, which has been
developed for educational purposes and can calculate the most popular metrics that have been proposed
over time, giving special importance to object-oriented metrics. The tool is tested experimentally for its
assistance in the evaluation of students’ Java programming assignments through statistical analysis. The
results showed a positive correlation between the instructor’s rating and the overall quality index
extracted from the software, indicating that the software tool could be a reliable assistant to instructor’s
grading under certain circumstances.

Keywords: software quality, code quality, JAVA code assessment, object-oriented software metrics,
metrics tool

Introduction

Object-oriented software quality metrics have recently gained significant attention in the
software industry in recent years. As software development has become more complex, the
need for effective software quality metrics has grown. Researchers have identified several
metrics that can be used to evaluate object-oriented software quality, including cohesion,
coupling, complexity, inheritance, and polymorphism (Briand et. al., 1999). However,
selecting the appropriate metrics can be challenging, as different metrics may be appropriate
for different software development scenarios.

Several contemporary software tools are available for measuring object-oriented software
quality metrics. These tools provide developers with a range of metrics that can be used to
evaluate software quality (Lanza & Marinescu, 2007). Examples of such tools include
SonarQube, Understand, Eclipse Metrics Plugin, CAST, etc. These tools can help developers
identify potential problems in their software and improve its overall quality. However, when
it comes to education, such tools may not be suitable for students and teachers of Software
Engineering courses, since they were not made for educational purposes. Actually, most of
them are commercial and rather complicated for a student to use.

To overcome these shortcomings, we have developed SQMetrics, an object-oriented
software quality metrics tool, especially for educational purposes considering various
pedagogical issues (tool design, educational objectives, pedagogical strategies, etc.). The tool
provides a simple GUI, which is suitable for inexperienced users (such as Software
Engineering students), together with a fully parametrized environment in order to support
different methods of computation for certain metrics. The tool could be useful to teachers and
students by providing a quantitative measure of the quality of their code. Students can benefit
from such measures since they can identify areas for improvement and track their progress

196 13th Pan-Hellenic and International Conference

over time. Additionally, the use of the tool can help students develop critical thinking skills
and a deeper understanding of object-oriented principles by analyzing and improving the
quality of their Java code.

The tool can also help teachers assess students’ performance. In this study, we examined
the quality of code written by Master Degree (MD) students in a Software Quality course on
a JAVA programming assignment. Together with all other metrics supported, each student
submission’s total quality index was calculated by SQMetrics. The instructor also graded
these submissions using his own grading criteria and statistical analysis was performed to
compare these two outcomes. The objective of this study was to examine the efficacy of
automated tools such as SQMetrics as a teacher’s assistant in determining the JAVA code
quality of student assignments.

The paper is organized as follows. The next section provides a short theoretical framework
about our tool (SQMetrics) and the metrics it supports. This is followed by research
methodology of the study, results, discussion, and conclusion.

The SQMetrics Tool

The developed SQMetrics (Software Quality Metrics) tool is an easy-to-use open-source tool
capable of calculating a complete set of quality metrics for code written in Java, with an
emphasis on object-oriented metrics, to support both students and teachers involved in a
Software Engineering academic course.

Our tool is capable of calculating the most common code size metrics (Lines of Code-LOC,
Logical Lines of Code-LLOC, and Lines of Comments-LC), all metrics proposed by Chidamber
& Kemerer (1991), all metrics included in the 3rd level of the hierarchical Quality Model for
Object-Oriented Design (QMOOD) model, as proposed by Bansiya & Davis (2002), as well as
the quality characteristics of the 1st level of this model. QMOOD metrics were included in the
tool as they allow for overall high-level quality indices to be calculated (Figure 1).

Namely, our tool calculates the 3rd-level metrics of QMOOD (DSC, NOH, ANA, DAM,
DCC, CAM, MOA, MFA, NOP, CIS, NOM), the 1st-level quality characteristics of QMOOD
(REUSABILITY, FLEXIBILITY, UNDERSTANDABILITY, FUNCTIONALITY, EXTENDIBI-
LITY, EFFECTIVENESS), the common ‘Lines of Code’ metrics (PLOC, LLOC, LC) and the
most popular object-oriented metrics that are commonly used in research studies (DIT, NOC,
CBO, WMC, LCOM1, LCOM2, LCOM3, RFC). Several research studies identify these metrics'
popularity (Barkmann et. al, 2009; Basili et. al., 1996).

From the above metrics, SQMetrics can produce overall quality indices (OQIs), which can
prove useful in several educational tasks, e.g. comparison between projects, improvement of
code quality, projects’ assessment, etc.

The interested reader can find more about the SQMetrics tool in (Σωφρονάς, 2020).

Figure 1. Metrics calculated from the SQMetrics tool.

ICT in Education 197

Testing SQMetrics assistance in the evaluation of student's projects

The SQMetrics tool was tested experimentally to see if it can be of assistance to Software
Quality instructors in order to assess their students’ projects. This generic research goal was
broken into three research questions, aligned with the objective of this study:

• RQ1. Concerning the same Java code assignment for all students, is the overall quality index
indicative of the best project?

• RQ2. Concerning different assignments, is the overall quality index indicative of the best
project?

• RQ3. Which design properties are indicative of the best projects?

Data Collection

This study focused on the analysis of three Java assignments that were given to MD students
in a Software Design and Management course. Each project was the assignment of a certain
year course and the data were collected for three consecutive academic years. Each year’s
students’ task was to implement the system classes of a specific real-world case study in the
Java programming language. The domain analysis (including the creation of class diagrams)
was the aim of previous assignments throughout the academic year. Students were asked to
provide fully-functional Java source code to implement the project’s requirements, written in
any Java software development environment. This assignment was given during the last
course of the MD program, when students were already familiar with Java Programming, in
the context of the cognitive subject “Software Management and Quality”. Students’ age
ranged from 22 to 54.

Data collected from the three consecutive academic terms were divided into the respective
three data sets. Only complete and functional projects were included in our sample.
Considering that the specific assignment was not mandatory for completing the course
requirements (but gave extra points to those who completed it), only a part of the students
submitted a complete Java project. More specifically:

• Dataset 1: 5 out of 17 submissions were considered, as the rest 12 were not qualified
(either as incomplete or faulty). 4 of them (80%) were male and 1 of them (20%) was
female in this sample.

• Dataset 2: 9 out of 11 submissions were considered, as the rest 2 were not qualified
(either as incomplete or faulty). 8 of them (89%) were male and 1 of them (11%) was
female in this sample.

• Dataset 3: 8 out of 14 submissions were considered, as the rest 6 were not qualified
(either as incomplete or faulty). 7 of them (88%) were male and 1 of them (12%) was
female in this sample.

All the assignments were manually graded by the same instructor, who used predefined
standards that evaluated code logic, syntax, style, completeness, and functionality. The
instructor’s manual grade for each assignment was considered in our statistical analysis,
conducted in SPSS Statistics.

Data Analysis and Results

SQMetrics was used to successfully analyze the 22 Java projects submitted by the students.
SQMetrics can extract and compute all useful metrics of the QMOOD model: the 11 metrics
of Level 3 (which correspond to the 11 design properties of Level 2), as well as the 6 high-
quality attributes of Level 1. Integrated into a single output, an overall quality index (OQI) for
each project is derived from the sum of the quality attributes:

198 13th Pan-Hellenic and International Conference

OQI = Reusability + Flexibility + Understandability + Functionality + Extendibility +

Effectiveness (1)

SQMetrics also uses another way of normalization, suggested by Bansiya & Davis (2002),
in order to compare different projects. In order to compare each term’s projects, the sum of
the normalized values for the 11 design properties can be used as follows (TDPI stands for
Total Design Properties Index):

TDPI =∑ 𝐷𝑃𝑖11
𝑖=1 (2)

To further normalize TDPIs for all projects (independent from the term), each TDPI value
is divided by the total amount nterm of analyzed submissions of the term it belongs, in order to
get a normalized value TNDPI є (1..11) for each project:

TNDPI=
𝑇𝐷𝑃𝐼

𝑛𝑡𝑒𝑟𝑚
 (3)

Finally, the manual instructor-based score to measure the code quality of each project was
used as the Instructor Index (II), to determine whether an automated code quality analyzer
tool such as SQMetrics could provide code quality measures that would be assistive to manual
grading by instructors. II is actually the instructor assessment’s grade on a scale of 0-10. Table
1 shows the descriptive statistics for II, OQI, and TNDPI values.

Table 1. Descriptive statistics for II, OQI and TNDPI values.

 N Minimum Maximum Mean Std. Deviation

II 22 4,30 9,80 7,3727 1,56363
OQI 22 4,38 13,15 6,5623 2,02829
TNDPI 22 5,60 10,13 8,3606 1,05802

Valid N (listwise) 22

RQ1

By examining the highest II, OQI, and TNDPI values (which indicate the best project) for each
dataset, we can observe that most of the time the indices agree with the highest value, but this
is not always the case. More particularly:

• The best assignment of dataset 1 (according to II) has also the greatest value in OQI,
however, it is ranked 2nd according to TNDPI.

• II, OQI, and TNDPI are in total agreement concerning the best assignment of dataset
2.

• The best assignment of dataset 3 (according to II) has also the greatest value in TNDPI,
however it is ranked in a relatively low position according to OQI.

To statistically answer RQ1, linear correlation analysis via Pearson's coefficient (r) was
conducted on the data of each dataset. This kind of analysis concerns the verification of the
existence of a correlation between two scale/ordinal variables. It shows whether there is
statistical evidence that the correlation exists as well as the direction and intensity of the
relationship between the variables.

By applying correlation analysis to each dataset separately, it appears that only dataset 2
has a statistically significant finding, therefore we cannot generalize the relationship for all
datasets.

ICT in Education 199

RQ2

However, by applying correlation analysis to the entire sample, it appears that the TNDPI
indicators have a statistically significant correlation with the instructor's rating. In particular,
there was a significant positive relationship between II and TNDPI, [r(22) = .435, p = .043] (Table 2).
This specific finding shows that TNDPI could be used as an auxiliary indicator in the grading
of such projects by the instructor. Graphs showing the Grade (II)-OQI and Grade (II) – TNDPI
value-pairs for all assignments can be seen in Figures 2 and 3 respectively. Correlation
between II and TNDPI can also intuitively be observed in the corresponding graph.

On the other hand, the analysis showed that there is no correlation between the variables
II and OQI.

Figure 2. Grade (II) vs OQI values for all 22 assignments.

Figure 3. Grade (II) vs TNDPI values for all 22 assignments.

200 13th Pan-Hellenic and International Conference

Table 2. Pearson correlation analysis in SPSS.

 II OQI TNDPI

II Pearson Correlation 1 0,154 0,435*
Sig. (2-tailed) 0,494 0,043
N 22 22 22

OQI Pearson Correlation 0,154 1 0,253
Sig. (2-tailed) 0,494 0,256
N 22 22 22

TNDPI Pearson Correlation 0,435* 0,253 1
Sig. (2-tailed) 0,043 0,256
N 22 22 22

*. Correlation is significant at the 0.05 level (2-tailed).

To further examine this relation, we performed another statistical comparison between the
grades of the instructor and the quality index TNDPI. Since they do not have the same
arithmetical limits, the non-parametric Wilcoxon signed-rank test is suitable for this type of
comparison. The test was performed to compare the two paired samples and the results are
presented in Table 3.

Table 3. Paired Samples Test between Instructor’s Grade and TNDPI

 TNDPI - Grade

Z -1,120a
Asymp. Sig. (2-tailed) 0,263

a. Based on positive ranks.

As the statistical analysis shows, there is no significant difference between the two grading
methods. This provides further evidence that TNDPIs could be used as a reliable and valid
assistant for the instructor's grades.

RQ3

In order to check which design properties best describe the highest graded projects by the
instructor in the whole dataset (if any), we need to normalize the values of all 11 design
properties (DP), calculated by SQMetrics. The new variables are:

DPNi=
𝐷𝑃𝑖∗10

𝑛𝑡𝑒𝑟𝑚
 (4)

and all get a normalized value DPN є (0..10).
Correlation analysis of total data with reduction of rankings per dataset showed that four

variables have a statistically significant correlation with the instructor's rating. In particular:

• there was a significant positive relationship between II and DESIGN SIZE, [r(22) = .485, p =
.022]

• there was a significant negative relationship between II and INHERITANCE, [r(22) = -.503,
p = .017]

• there was a significant positive relationship between II and MESSAGING, [r(22) = .510, p =
.015]

• there was a significant positive relationship between II and COMPLEXITY, [r(22) = .623, p =
.002]

These findings could serve in two ways:

ICT in Education 201

1. reveal the inner code quality metrics that mostly affect the instructor’s grading, and
2. lead to weight modification of each variable for calculating the total quality indices

of a project.
One of the biggest advantages of this model is that it can easily accept parameterizations

to adapt to new goals and incentives. At the lowest level, the metrics can be changed and a
different set of quality attributes can be used. In addition, as previously stated, the weights
on the quality attributes can be modified, and the attributes themselves can be replaced by
others if desired to improve the overall indicators. Finally, a different normalization approach
can be used, e.g. (Chawla & Chhabra, 2013). Correlation analysis between DPNs and II for
each dataset separately showed no consistency among datasets in the statistical results.

Discussion

In the results of the presented statistical analysis, a positive correlation between the instructor
rating and the overall TNDPI quality index extracted from the SQMetrics software is shown.
Furthermore, no statistically significant difference is presented between these two
measurements after performing a non-parametric paired samples test. These two
observations give a first indication that the overall quality indices derived from the QMOOD
model (and calculated by the SQMetrics tool) can be a useful aid for the evaluation of Java
code submitted as an academic project in a related course under certain conditions.

A key requirement is that the way the instructor scores (i.e. his own criteria and their
relevant weights) is close to the quality metrics calculated by SQMetrics so that there is
convergence in the calibration. This is not always the case (especially if the measurable criteria
are not clearly defined), as different instructors may grade code with different qualitative and
quantitative criteria. Note that some instructors may even grade in a completely intuitive
manner. Still, the quality criteria defined by QMOOD is an objective measure of object-
oriented software quality and a useful reference to assess and compare code.

Since the number of assignments used for the evaluation is small, a second condition is to
conduct additional research with more student projects and different instructors, so that, if
valid, the efficacy of the SQMetrics tool as a teacher's assistant can be generalized. It should
be noted here that for many instructors code grading does not necessarily mean code quality
grading. Let's also not forget that for the study presented, only projects that were "running"
and satisfied the functional requirements of the assignment were considered. It is not clear
that projects that were not functional would have lower quality metrics values in SQMetrics
(although some metrics are actually expected to have rather lower values, e.g. LOC). In such
cases, it seems that the instructor's judgment on the grade is decisive, e.g. a project that
performs only 2 of the 4 requested functions would receive a mediocre grade from the
instructor, even though some quality characteristics (e.g. understandability) would have a
higher ranking in SQMetrics than other complete and fully-functional submissions.

SQMetrics tends to give all the quality components the same weight. However, instructors
usually provide different weights to individual code metrics based on the importance of that
component. To identify which factors are the best predictors of the instructor's grade, multiple
linear regression analysis could be used in a future study to model the relationship between
the instructor's grade and the 1st level quality characteristics calculated by the SQMetrics.
Moreover, depending on the components’ selection different reports may be produced for
both the student’s and the teacher’s perspective (Cipriano et. al., 2022).

Although we have indications that SQMetrics can be a reliable assistant to instructor
grading, which can save time and resources while maintaining grading consistency, further
research is necessary to determine the extent of the software's applicability and whether it can

202 13th Pan-Hellenic and International Conference

replace instructor grading in all contexts (Gikandi et. al., 2011). It should be also pointed out
that there is ongoing research in the field of automatic grading of student projects, such as
using machine learning algorithms to grade Java projects and creating intelligent tutoring
systems for Java programming (Al-Shawwa et. al., 2019). This research can provide educators
with new opportunities to assess students' Java code in a more efficient and objective manner.

Conclusions

In this exploratory study, we examined the efficacy of the automated tool SQMetrics in
determining JAVA code quality. The results showed a positive correlation between instructor
rating and the overall quality index extracted from the software, indicating that the software
tool can be a reliable and accurate assistant to instructor grading. The absence of a statistically
significant difference between the two measurements further supports this statement.
However, this research is a preliminary study and has its limitations.

Automated tools, like SQMetrics, are useful since they can help students become better
coders by providing them with an easy mechanism to check the quality of their codes before
assignment submission. The use of technology in assessment can increase student
engagement and provide immediate feedback, which can improve their learning outcomes.

Overall, the findings suggest that the software tool can be a promising assistant to
instructor grading, but additional research is needed to determine the full extent of its
applicability and potential limitations. Further evaluation of the software's reliability,
validity, and bias, as well as its effectiveness in different contexts, can help to inform decisions
about the use of the software tool for assessment.

References

Al-Shawwa, M. O., Alshawwa, I. A., & Abu-Naser, S. S. (2019). An intelligent tutoring system for learning
java, International Journal of Academic Information Systems Research (IJAISR), 3(1), 1-6.

Bansiya, J., & Davis, C. G. (2002). Hierarchical model for object-oriented design quality assessment. In
IEEE Transactions on Software Engineering, SE 2002, 28(1), 4-17.

Basili, V. R., Briand, L. C., & Melo, W. L. (1996). A validation of object-oriented design metrics as quality
indicators. IEEE Transactions on software engineering, 22(10), 751-761.

Barkmann, H., Lincke, R., & Löwe, W. (2009). Quantitative evaluation of software quality metrics in open-
source projects. In 2009 International Conference on Advanced Information Networking and Applications
Workshops (pp. 1067-1072). IEEE.

Briand, L., Daly, J., & Wüst, J. (1999). A unified framework for coupling measurement in object-oriented
systems. IEEE Transactions on Software Engineering, 25(1), 91-121.

Chawla, M. K., & Chhabra, I. (2013). Capturing OO Software metrics to attain quality attributes–a case
study. International Journal of Scientific & Engineering Research, 4(6), 359-363.

Chidamber, S. R., & Kemerer, C. F. (1991). Towards a metrics suite for object oriented design. In
Proceedings of the 6th ACM Conference on Object Oriented Programming, Systems, Languages and
Applications (OOPSLA), (pp. 197-211), Phoenix AZ.

Cipriano, B. P., Fachada, N., & Alves, P. (2022). Drop Project: An automatic assessment tool for
programming assignments. SoftwareX, 18, 101079.

Gikandi, J. W., Morrow, D., & Davis, N. E. (2011). Online formative assessment in higher education: A
review of the literature. Computers & Education, 57(4), 2333-2351.

Lanza, M., & Marinescu, R. (2007). Object-oriented metrics in practice: using software metrics to characterize,
evaluate, and improve the design of object-oriented systems. Springer Science & Business Media.

Σωφρονάς, Δ. (2020). Σχεδιασμός και Ανάπτυξη Εφαρμογής Υπολογισμού Μετρικών Ποιότητας Λογισμικού.
Μεταπτυχιακή Εργασία, Μεταπτυχιακή Εξειδίκευση στα Πληροφοριακά Συστήματα (ΠΛΣ),
Ελληνικό Ανοικτό Πανεπιστήμιο (ΕΑΠ). https://apothesis.eap.gr/archive/item/78153

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

