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Περίληψη 

Σκοπός της εργασίας είναι η παρουσίαση μιας εφαρμογής που αξιοποιεί τεχνικές υπολογιστικής 

νοημοσύνης για την κατηγοριοποίηση των μαθητών σύμφωνα με τις αρχές της διαφοροποιημένης 
διδασκαλίας. Βάσει των αποτελεσμάτων, η εφαρμογή αλγόριθμου διαφορικής εξέλιξης σε δεδομένα που 

αναφύονται από την πολυπρισματική αξιολόγηση των χαρακτηριστικών και αναγκών του μαθητή, 
συμβάλλει στον αποτελεσματικό σχηματισμό ομοιογενών μαθητικών ομάδων, με κοινά γνωρίσματα 

μαθησιακής ικανότητας, δυσκολιών, ψυχοκοινωνικό και γνωστικό προφίλ. Έτσι ο εκπαιδευτικός μπορεί 
να διαχειρίζεται ευκολότερα τους μαθητές του και να γνωρίζει τα χαρακτηριστικά της κάθε ομάδας. Η 
μεθοδολογία αυτού του προβλήματος παρέχει βελτιωμένες ικανότητες κατηγοριοποίησης σε σχέση με 

συμβατικές μεθόδους. 

Λέξεις κλειδιά: Διαφοροποιημένη διδασκαλία, Ομαδοποίηση μαθητών, Υπολογιστική νοημοσύνη 

Εισαγωγή 

H διαφοροποιημένη διδασκαλία είναι μια διαδικασία σχεδιασμού και μια διδακτική 
μεθοδολογία με προσανατολισμό τις ανάγκες, τις ικανότητες, τα στυλ μάθησης και τα 
ψυχοκοινωνικά χαρακτηριστικά των εκπαιδευομένων (Tomlinson et al., 2003). Πλήθος 
ερευνητών υποστηρίζει πως η χρήση διαφοροποιημένων πρακτικών σε τάξεις μεικτών 
ικανοτήτων αποτελεί βασική αρχή για την αποτελεσματική διδασκαλία (Valiandes & 
Neophytou, 2018; Gagatsis & Koutselini, 1999). Πρακτικές διαφοροποιημένης διδασκαλίας 
έχουν συνδεθεί με βελτίωση της επίδοσης των μαθητών (Prast et al., 2018). 

Ως μέθοδος σχετίζεται µε διδακτικές και οργανωτικές πρακτικές που στοχεύουν στη 
διαχείριση της ανοµοιογενούς τάξης (Deunk et al., 2018). Μία από τις βασικές αρχές της είναι 
η ομαδοποίηση των ιδιαίτερων γνωρισμάτων του μαθητή σύμφωνα με μια πολυπρισματική 
θεώρηση που εστιάζει σε αυτόν και τις ανάγκες του (Deunk et al., 2018; Tomlinson et al., 2003). 
Δεδομένου της ατομικής διαφορετικότητας ως προς την ετοιμότητα, τα ενδιαφέροντα και τους 
τρόπους μάθησης της τάξης, σχεδιάζεται και εφαρμόζεται σε μικρές ομάδες μαθητών με 
παρόμοια χαρακτηριστικά, υπό την οπτική μιας εξατομικευμένης υποστήριξης και 
καθοδήγησης των ομάδων από τον εκπαιδευτικό. Βάσει της ομαδοποίησης αυτής ο 
εκπαιδευτικός παρέχει εξατομικευμένο μαθησιακό υλικό και διαφοροποιημένη καθοδήγηση 
στις ομάδες, προσαρμοσμένα για την ικανοποίηση των μαθησιακών αναγκών (Roy et al., 
2013). Σε μια τάξη που επίκεντρο είναι ο μαθητής, οι εκπαιδευτικοί επικεντρώνονται στις 
ανάγκες όλων των εκπαιδευομένων μέσα από τη διδασκαλία σε ομάδες και ως εκ τούτου 
χρησιμοποιούν μια μεγάλη ποικιλία στρατηγικών και πρακτικών διδασκαλίας για να το 
επιτύχουν αυτό. 
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Παρά το γεγονός ότι στην πλειοψηφία τους οι εκπαιδευτικοί αναγνωρίζουν την 
αναγκαιότητα της διαφοροποιημένης διδασκαλίας, έρευνες καταδεικνύουν ότι οι 
προσαρμογές που οι ίδιοι κάνουν στη μαθησιακή διαδικασία είναι περιορισμένες (Wan, 
2017). Η εξατομικευμένη διδασκαλία ομάδων με ανομοιογενή χαρακτηριστικά είναι 
αποδοτική όταν συνδυάζεται από κατάλληλο εκπαιδευτικό υλικό, εστιασμένη υποστήριξη ως 
προς το επίπεδο, τις ανάγκες και τις δυσκολίες που παρουσιάζουν οι μαθητές, όπως επίσης 
και από την κατάλληλη ομαδοποίηση όλων αυτών των χαρακτηριστικών για τη διαχείριση 
της τάξης (Saleh, Lazonder, & De Jong, 2005; Nomi, 2009). 

Ένας ανασταλτικός παράγοντας εφαρμογής διαφοροποιημένων πρακτικών στην τάξη, 
σχετίζεται με τις δυσκολίες που αντιμετωπίζουν οι εκπαιδευτικοί στο να αξιοποιήσουν 
στρατηγικές ευέλικτης ομαδοποίησης και διαφοροποίησης (Prast et al., 2018; Santangelo & 
Tomlinson, 2012). Ο προβληματισμός επικεντρώνεται στην κατάλληλη αποτίμηση όλων 
αυτών των ιδιαίτερων μαθησιακών χαρακτηριστικών και την υιοθέτηση ασφαλών κριτηρίων 
για την πολυκριτήρια ομαδοποίηση των μαθητών, όπως επίσης και για το χρόνο που 
χρειάζεται σε επίπεδο εφαρμογής μια τέτοια προσέγγιση. Σύμφωνα με μελέτες, η 
αποτελεσματικότητα της διαφοροποιημένης διδασκαλίας εξαρτάται σε μεγάλο βαθμό από 
τον τρόπο με τον οποίο οι ίδιοι οι εκπαιδευτικοί ομαδοποιούν τους μαθητές τους καθώς και 
τα κριτήρια που αξιοποιούν για διαφοροποίηση ή ομαδοποίηση των μαθησιακών 
ικανοτήτων και αναγκών (Faber, Glas, & Visscher, 2018). Οι εκπαιδευτικοί συνήθως 
λαμβάνουν υπόψιν τους δεδομένα μαθησιακής επίτευξης κατά το διαχωρισμό, 
αντιμετωπίζοντας ντετερμινιστικά την αξιολόγηση και την ομαδοποίηση των μαθητών τους 
(Savu-Cristescu, 2013). Ωστόσο, είναι σημαντικό να βασίζουν τη σύνθεση των ομάδων 
διδασκαλίας τους σε ποικίλους πόρους δεδομένων που αντικατοπτρίζουν ολιστικά το 
γνωστικό, νοητικό και κοινωνικοσυναισθηματικό προφίλ του μαθητή και τη σχέση του με τη 
δυναμική της τάξης (Houtveen et al., 1999; Deunk et al., 2015; Slavin, 1987). Στην πράξη, 
ωστόσο, ένα τέτοιο έργο, είναι εξαιρετικά δύσκολο λόγω της συνθετότητας και της 
πολικριτηριακής φύσης της αποτελεσματικής ομαδοποίησης. 

Η υπολογιστική νοημοσύνη (computational intelligence, CI) αποτελεί τομέα της τεχνητής 
νοημοσύνης και βασίζεται στη μίμηση στοιχείων ευφυΐας που παρατηρούνται στα έμβια 
όντα. Προσφέρει τεχνικές αποτελεσματικής επίλυσης σύνθετων προβλημάτων που δεν θα 
μπορούσαν να επιλυθούν με συμβατικές μεθόδους (Floreano & Mattiussi, 2008). 
Ανασκοπώντας τη βιβλιογραφία, θα διαπιστωθούν μελέτες που χρησιμοποιούν μεθοδολογίες 
υπολογιστικής νοημοσύνης για τον αυτοματοποιημένο σχηματισμό ομάδων στο χώρο της 
εκπαίδευσης (Chikh & Hank, 2016; Agrawal, Golshan, & Terzi, 2014). Αυτές αντιμετωπίζουν 
τον σχηματισμό ομοιογενών ή ετερογενών ομάδων ως ένα πολύπλοκο πρόβλημα. Σε αυτό το 
πλαίσιο οι Ani et al. (2010), Pinninghoff et al. (2015), Moreno, Ovalle & Vicari (2012), Wang et 
al. (2007), Hwang et al. (2008) αξιοποιούν γενετικούς αλγόριθμους, οι Ηο et al. (2009) και Lin 
et al. (2010) χρησιμοποιούν αλγόριθμους βελτιστοποίησης σμήνους σωματιδίων και οι Graf & 
Bekele (2006) αλγόριθμους βελτιστοποίησης με βάση την λειτουργία των αποικιών των 
μυρμηγκιών (Ant Colony Optimization, ACO) για το σχηματισμό μαθητικών ομάδων 
βασισμένων σε ποικίλα χαρακτηριστικά. 

Στην κατεύθυνση αυτή, το πρόβλημα του σχηματισμού μαθητικών ομάδων για την 
εφαρμογή προγραμμάτων διαφοροποιημένης διδασκαλίας μπορεί να χαρακτηριστεί ως ένα 
NP-hard πρόβλημα, όταν για την αξιολόγηση των μαθητών δεν λαμβάνεται υπόψη μόνο ένα 
κριτήριο αλλά ένα σύνολο ατομικών, μαθησιακών, ψυχολογικών και κοινωνικών 
χαρακτηριστικών (Yeoh & Mohamad Nor, 2011). 

Σκοπός της εργασίας αυτής είναι η παρουσίαση ενός τεχνολογικού συστήματος που 
αξιοποιεί τεχνικές υπολογιστικής νοημοσύνης για να διευκολύνει την κατηγοριοποίηση των 
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μαθητών, βάσει εξατομικευμένης αξιολόγησης των ιδιαίτερων χαρακτηριστικών τους και 
σύμφωνα με τις αρχές της διαφοροποιημένης διδασκαλίας. Η αξιοποίησή του στοχεύει στο να 
διευκολύνει τη λήψη αποφάσεων του εκπαιδευτικού μέσα την τάξη. Με χρήση αλγόριθμου 
διαφορικής εξέλιξης (DE) θα σχηματίζονται, μέσα από πολυκριτήριες εκτιμήσεις, 
ταξινομημένες και ετερογενείς μεταξύ τους μαθητικές ολιγομελής ομάδες, με τα μέλη της κάθε 
μίας να φέρει ομοιογενή χαρακτηριστικά μαθησιακής ικανότητας, δυσκολιών στο γνωστικό 
αντικείμενο, ψυχοκοινωνικό και γνωστικό προφίλ. 

Αλγόριθμος Διαφορικής Εξέλιξης και ομαδοποίηση 

Ο αλγόριθμος Διαφορικής Εξέλιξης (Differential Evolution - DE) (Storn & Price, 1997), είναι 
μία τεχνική στοχαστικής βελτιστοποίησης βασισμένη στον πληθυσμό. Χρησιμοποιείται για 
την επίλυση προβλημάτων συνεχούς βελτιστοποίησης. Ο DE είναι ένας πολύ απλός 
αλγόριθμος βελτιστοποίησης αφού χρησιμοποιεί μόνο δύο διαφορετικές παραμέτρους, τον 
τελεστή διασταύρωσης και τον τελεστή μετάλλαξης. 

Στον DE, κάθε σωματίδιο αναπαριστά μία υποψήφια λύση. Οι νέες υποψήφιες λύσεις 
δημιουργούνται συνδυάζοντας τα χαρακτηριστικά (γονίδια) ενός γονέα με αυτά κάποιων 
ακόμα σωματιδίων του πληθυσμού λύσεων. Για κάθε γονέα, ο αλγόριθμος χρησιμοποιώντας 
τον τελεστή μετάλλαξης δημιουργεί ένα δοκιμαστικό διάνυσμα 𝐶. Για να το πετύχει αυτό 
επιλέγει τυχαία τρία διαφορετικά σωματίδια 𝑃𝑖1 , 𝑃𝑖2 , 𝑃𝑖3. Οι θέσεις των νέων υποψήφιων 
λύσεων υπολογίζονται βάσει της ακόλουθης εξίσωσης: 

 𝐶 = 𝑃𝑖1 + 𝐹(𝑃𝑖2 − 𝑃𝑖3) (1) 

όπου 𝐹 ∈ (𝐹𝑚𝑖𝑛 , 𝐹𝑚𝑎𝑥) είναι ένας παράγοντας κανονικοποίησης, 𝐹𝑚𝑖𝑛 > 0 και 𝐹𝑚𝑎𝑥 < 1. 
Αμέσως μετά τη μετάλλαξη, αρχίζει η φάση της διασταύρωσης. Εκεί, για κάθε γονίδιο της 

υποψήφιας λύσης, γίνεται σύγκριση ενός τυχαίου αριθμού στο διάστημα (0,1) με τον τελεστή 
διασταύρωσης 𝐶𝑟 ∈ (0,1). Εάν ο τυχαίος αριθμός είναι μικρότερος ή ίσος με το 𝐶𝑟, η τιμή του 
γονιδίου του απογόνου κληρονομείται από το δοκιμαστικό διάνυσμα. Σε διαφορετική 
περίπτωση επιλέγεται από το γονέα. Η υποψήφια λύση αντικαταστεί τον αντίστοιχο γονέα 
εάν είναι καλύτερη από αυτόν. Σε διαφορετική περίπτωση απορρίπτεται. 

Παρακάτω παρουσιάζεται ένας ψευδοκώδικας του αλγορίθμου Διαφορικής Εξέλιξης (DE). 
Αρχικοποίηση 
Αρχικοποίηση των παραμέτρων ελέγχου 𝐹𝑚𝑖𝑛 , 𝐹𝑚𝑎𝑥 και 𝐶𝑟 
Δημιουργία του αρχικού πληθυσμού 
Υπολογισμός της συνάρτησης ποιότητας για κάθε μέλος του πληθυσμού 
Κύρια Φάση 
Επανέλαβε μέχρι να ικανοποιηθεί το κριτήριο τερματισμού 

Για κάθε υποψήφια λύση 𝑖 
Δημιούργησε το δοκιμαστικό διάνυσμα χρησιμοποιώντας την εξίσωση (1) 
Δημιουργία απογόνου με χρήση διασταύρωσης  
Αξιολόγησε τον απόγονο 
Αν ο απόγονος είναι καλύτερος, ο απόγονος αντικαταστεί τον γονέα 

Τέλος επανάληψης 
Παρουσίαση αποτελεσμάτων 
Η ομαδοποίηση μπορεί να χαρακτηριστεί ως πρόβλημα βελτιστοποίησης, και έτσι μπορεί 

να λυθεί χρησιμοποιώντας αλγορίθμους βελτιστοποίησης και πιο συγκεκριμένα 
χρησιμοποιώντας προσεγγιστικούς αλγορίθμους. Για τα προβλήματα ομαδοποίησης, ο 
αριθμός των ατόμων κάθε ομάδας δεν είναι γνωστός εξαρχής. Προσπάθειες επίλυσης 
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προβλημάτων ομαδοποίησης αφορούν τους αλγορίθμους k-Means (Lloyd, 1982), DBSCAN 
(Ester, Kriegel, Sander, & Xu, 1996), OPTICS (Ankerst, Breunig, Kriegel, & Sander, 1999) και 
Fuzzy Clustering (Dunn, 1974). Για καθέναν όμως από αυτούς τους αλγορίθμους χρειάζεται 
η εκ των προτέρων γνώση του ακριβή αριθμού των συστάδων. Επομένως, μερικές από τις 
κλασικές προσεγγίσεις ομαδοποίησης δεν μπορούν να χρησιμοποιηθούν για την επίτευξη του 
στόχου της αυτόματης συσταδοποίησης. Ωστόσο, ορίζοντας μία καλή αντικειμενική 
συνάρτηση, η αυτόματη ομαδοποίηση μπορεί να πραγματοποιηθεί χρησιμοποιώντας 
προσεγγιστικούς αλγορίθμους. 

Μεθοδολογία ανάπτυξης 

Για την επίλυση του NP-hard προβλήματος της κατηγοριοποίησης των μαθητών σε 
ετερογενείς ομάδες με παρόμοια χαρακτηριστικά σε επίπεδο ομάδας, εφαρμόστηκε ο 
αλγόριθμος DE σε αξιολογικά δεδομένα μαθητών. Παρόλο που ο αλγόριθμος μπορεί να 
προγραμματιστεί σε οποιαδήποτε γλώσσα προγραμματισμού, επιλέξαμε το 
προγραμματιστικό περιβάλλον της Matlab, λόγω της ευκολίας δημιουργίας γραφικών 
παραστάσεων (Παπαοδυσσεύς, Καλοβρέκτης, & Μυλωνάς, 2016). Οι δοκιμές έγιναν σε έναν 
i5 επιτραπέζιο υπολογιστή των 3.3 GHz, με 8GB μνήμη RAM. 

Εφαρμόζοντας τον DE, υποθέτουμε ότι έχουμε 𝑛 μαθητές αποτελούμενοι από 𝑚 
χαρακτηριστικά, οι οποίοι θα πρέπει να χωριστούν το πολύ σε 𝑘 ομάδες. Τότε, κάθε υποψήφια 
λύση αναπαρίσταται ως ένας πίνακας 𝑘 × (𝑚 + 1). Κάθε γραμμή του πίνακα αναπαριστά το 
κέντρο κάποιας ομάδας. Οι τυχαίες αρχικές τιμές των 𝑚 πρώτων στηλών κάθε υποψήφιας 
λύσης, βρίσκονται στο διάστημα τιμών του πίνακα δεδομένων, ανα στήλη, ενώ οι τιμές της 
τελευταίας στήλης κυμαίνονται στο διάστημα (0,1). Ο λόγος ύπαρξης της τελευταίας στήλης 
είναι να καθορίζει τον αριθμό των συστάδων. Στην περίπτωση όπου κάποια τιμή της 
τελευταίας στήλης είναι μικρότερη από μία σταθερά 𝜃 ορισμένη από το χρήστη, τότε οι 
κλάσεις μειώνονται κατά μία και η αντίστοιχη γραμμή διαγράφεται. Οι γραμμές που έχουν 
απομείνει αξιολογούνται. 

Προκειμένου να αξιολογηθούν οι υποψήφιες λύσεις, χρησιμοποιήθηκε μία αντικειμενική 
συνάρτηση η οποία είναι βασισμένη στον δείκτη Davies–Bouldin (DB) (Davies & Bouldin, 
1979). Θεωρούμε ότι 𝑅𝑖,𝑗 είναι ένα μέτρο αξιολόγησης κάθε κλάσης το οποίο δίνεται από τον 

ακόλουθο τύπο: 

 𝑅𝑖,𝑗 =
𝑆𝑖+𝑆𝑗

𝑀𝑖,𝑗
 (2) 

όπου 𝑆𝑖 και 𝑆𝑗 είναι οι διασπορές των 𝑖 και 𝑗 συστάδων, υπολογισμένες από τον τύπο: 

 𝑆𝑖 = (
1

𝑇𝑖
∑ |𝑋𝑗 − 𝐴𝑖|

𝑞𝑇𝑖

𝑗=1 )
1/𝑞

 (3) 

όπου 𝑇𝑖 είναι ο αριθμός των διανυσμάτων στην 𝑖 συστάδα, 𝑋𝑗 είναι το διάνυσμα 

χαρακτηριστικών κάθε μαθητή, και 𝐴𝑖 είναι το κέντρο της 𝑖 συστάδας. Κάθε μαθητής 
κατατάσσετε στη συστάδα της οποίας το κέντρο της είναι πιο κοντά στο δικό του. 

𝑀𝑖,𝑗 είναι η μετρική Minkowski (Friedman & Rubin, 1967) υπολογισμού των κέντρων των 

συστάδων 𝑖 και 𝑗, υπολογισμένες ως: 

 𝑀𝑖,𝑗 = {∑ |𝑎𝑘,𝑖 − 𝑎𝑘,𝑗|
𝑝𝑁

𝑘=1 }
1/𝑝

 (4) 
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όπου 𝑎𝑘,𝑖 είναι το 𝑘 στοιχείο του 𝐴𝑖. Όταν το 𝑝 είναι 2, ο τύπος αντιστοιχεί στην Ευκλείδεια 
απόσταση. 

Η τιμή της αντικειμενικής συνάρτησης 𝑅̅ ορίζεται αμέσως μετά ως: 

 𝑅̅ =
1

𝑁
∑ 𝑅𝑖

𝑁
𝑖=1  (5) 

όπου 

 𝑅𝑖 = μέγιστη τιμή του 𝑅𝑖,𝑗 για 𝑖 ≠ 𝑗 (6) 

Για την περίπτωση όπου μια ομάδα μαθητών ήταν πολύ μικρή ή πολύ μεγάλη, προστέθηκε 
ένα σφάλμα στην αντικειμενική συνάρτηση, διπλασιάζοντας την τιμή της, με σκοπό όλες οι 
ομάδες να κυμαίνονταν από τέσσερα μέχρι έξι άτομα. Ο αριθμός των τεσσάρων έως έξι μελών 
θεωρείται κατάλληλος για τον αριθμό των μελών μιας μαθητικής ομάδας που λειτουργεί 
ομαδοσυνεργατικά μιας και διευκολύνεται η αποτελεσματική συνεργασία και επικοινωνία 
των μελών εντός αυτής (Καζέλα, 2009; Κανάκης, 2001). Ως αποτέλεσμα, το 𝑘 θα πρέπει να είναι 
μία ακέραια σταθερά μεγαλύτερη ή ίση από το πηλίκο της διαίρεσης του αριθμού των 
μαθητών με τον αριθμό τέσσερα. 

Ακολούθως, αφού ολοκληρώθηκε η διαχωρισμός των ομάδων χρησιμοποιώντας τον DE, 
οι λύσεις αξιολογήθηκαν ενδοομαδικά ως προς την ομοιογένειά τους σύμφωνα με το 
συντελεστή μεταβλητότητας (coefficient of variation, Cv). Τιμές κοντά στο 0 δηλώνουν 
ομοιογένεια ως προς το χαρακτηριστικό, ενώ τιμές κοντά στο 1 υποδεικνύουν ανομοιογένεια 
(Lovie, 2005). Οι τιμές του δείκτη Cv δείχνουν: α) υψηλού επιπέδου ομοιογένεια 
(0.00<Cv≤0.25), β) μέτριου επιπέδου ομοιογένεια (0.25<Cv≤0.40) and γ) χαμηλού επιπέδου 
ομοιογένεια (Cv>0.40). Επίσης αξιολογήθηκαν με τον έλεγχο Kruskal-Wallis οι ομάδες που 
προέκυψαν για να διερευνηθεί αν αυτές διαφέρουν σε διάφορα επίπεδα στατιστικής 
σημαντικότητας (0,01, 0,001). Το μέγεθος των επιδράσεων (size effects) υπολογίστηκε μέσω 
των δεικτών Eta Squared (η2) και Cohen’s d (dCohen) (Fritz, Morris, & Richler, 2012, p. 12; Cohen, 
2008). 

Δεδομένα δοκιμών 

Για την επίτευξη του παραπάνω σκοπού αξιοποιήθηκαν αξιολογικά δεδομένα ποσοτικού 
χαρακτήρα που αφορούσαν ατομικές επιδόσεις και ψυχοκοινωνικά δεδομένα μαθητών μιας 
ανομοιογενούς τάξης μαθηματικών, προκειμένου να υλοποιηθούν οι πολυκριτήριες 
διαδικασίες δοκιμών. 

Πίνακας 1. Περιγραφικοί δείκτες ποσοτικών δεδομένων που χρησιμοποιήθηκαν για την 
εφαρμογή του αλγορίθμου DE 

 T1 T2 T3 T4 T5 

Μ.Ο. 20,08 31,90 8,57 2,29 4,14 

Τ.Α. 3,50 3,58 1,25 0,78 1,01 

Ελάχιστο 14 27 6 1 2 

Μέγιστο 26 39 10 3 5 

Εύρος 12 12 4 2 3 

ΔΕ 95% 17,50-22,50 28,50-34,00 7,50-10,00 2,00-3,00 3,00-5,00 

Τα δεδομένα, όπως περιγράφονται και στον Πίνακα 1, αφορούν την ολιστική αξιολόγηση 
μιας τάξης μαθητών δημοτικού σχολείου συνολικής δυναμικότητας 21 παιδιών, με τα εξής 
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εργαλεία: α) το τεστ Νοημοσύνης του Raven's (CPM, 2015) για τη σφαιρική εκτίμηση της 
γενικής νοητικής ικανότητας (T1), β) την Ανιχνευτική δοκιμασία μαθηματικής επίδοσης για 
μαθητές δημοτικού των Παπαϊωάννου κ.ά. (2010), για την εκτίμηση των μαθηματικών 
δεξιοτήτων (T2), γ) το βαθμό του τριμήνου του μαθητή/τριας, ο οποίος αποτελεί εκτίμηση της 
επίδοσης στα μαθηματικά σύμφωνα με τον εκπαιδευτικό (T3), δ) την κλίμακα Ανίχνευσης 
Μαθησιακών Δυσκολιών για τα μαθηματικά των Παντελιάδου και Σιδερίδη (2007) (T4) και 
τέλος ε) το εργαλείο Ψυχοκοινωνικής Προσαρμογής των Χατζηχρήστου κ.ά. (2007) για την 
εκτίμηση των δεξιοτήτων ή των δυσκολιών στον κοινωνικό και συναισθηματικό τομέα, τη 
σχολική προσαρμογή του μαθητή και τη διαπροσωπική και ενδοπροσωπική προσαρμογή του 
(T5).  

Αποτελέσματα 

Αρχικά γίνεται η αρχικοποίηση των παραμέτρων του αλγορίθμου. Ο αλγόριθμος έτρεξε για 
διαφορετικές παραμέτρους. Οι παράμετροι κυμαίνονταν στα εξής όρια: Στο 𝐹𝑚𝑖𝑛 δόθηκαν 
τιμές από 0.1 μέχρι 0.3, στο 𝐹𝑚𝑎𝑥 δόθηκαν τιμές από 0.7 μέχρι 0.9 και τέλος, στο 𝐶𝑟 δόθηκαν 
τιμές από 0.1 μέχρι 0.9. Συνολικά δοκιμάστηκαν 81 διαφορετικοί συνδυασμοί παραμέτρων, 
κάθε ένας από τους οποίους δοκιμάστηκε πέντε φορές. Τα αποτελέσματα συγκρίθηκαν με 
βάση την ελάχιστη τιμή και το μέσο όρο των αποτελεσμάτων. Αν και τα 𝐹𝑚𝑖𝑛 , 𝐹𝑚𝑎𝑥 
παρατηρήθηκαν να μην αλλάζουν στατιστικώς σημαντικά το αποτέλεσμα του αλγορίθμου, η 
παράμετρος 𝐶𝑟 φάνηκε να επηρεάζει σημαντικά το αποτέλεσμα, καθώς για τιμές μεγαλύτερες 
του 0.3 ο αλγόριθμος εγκλωβιζόταν σε κάποιο τοπικό βέλτιστο σημείο. Για αυτό το λόγο οι 
παράμετροι που επιλέχτηκαν είναι οι εξής: 𝐹𝑚𝑖𝑛 = 0.1, 𝐹𝑚𝑎𝑥 = 0.7 και 𝐶𝑟 = 0.1. 
Χρησιμοποιώντας το συνδυασμό αυτό, ο αλγόριθμος έτρεξε 50 φορές. Κάθε τρέξιμο διαρκεί 
περίπου εννέα δευτερόλεπτα. 

Από την στατιστική ανάλυση της επίδοσης του αλγορίθμου DE προέκυψαν τα 
περιγραφικά στοιχεία του Πίνακα 2, η καμπύλη σύγκλισης του αλγορίθμου DE στο εν λόγω 
πρόβλημα και η γραφική αναπαράσταση της ομαδοποίησης. 

Πίνακας 2. Στατιστική Ανάλυση επίδοσης Αλγορίθμου DE 

 Καλύτερη Χειρότερη Μ.Ο. Διάμεσος Τ.Α. 

Κόστος 0.68 0.93 0.80 0.80 0.05 

Η πρώτη ομάδα περιλάμβανε έξι μαθητές με μέση τιμή ανά κλίμακα αξιολόγησης ίση με 
Τ1=18,83±0,75, Τ2=30,50±1,04, Τ3=8,33±0,52, Τ4=2,00±0,00, Τ5=3,83±0,75. Η δεύτερη 
περιλάμβανε πέντε μαθητές με μέση τιμή ανά κλίμακα ίση με Τ1=15,60±1,14, Τ2=27,80±0,45, 
Τ3=6,80±0,45, Τ4=1,20±0,45, Τ5=2,80±0,45. Η τρίτη περιλάμβανε τέσσερις μαθητές με μέση 
τιμή ανά κλίμακα ίση με Τ1=25,25±0,96, Τ2=37,75±0,96, Τ3=10,00±0,00, Τ4=3,00±0,00, 
Τ5=5,00±0,00. 
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Σχήμα 1. Ομαδοποίηση με χρήση του 
αλγορίθμου DE 

Σχήμα 2. Καμπύλη σύγκλισης του 
αλγορίθμου DE στο εν λόγω πρόβλημα 

Τέλος, η τέταρτη ομάδα περιλάμβανε έξι μαθητές με μέση τιμή ανά κλίμακα ίση με 
Τ1=21,50±1,05, Τ2=32,83±1,33, Τ3=9,33±0,52, Τ4=3,00±0,00, Τ5=5,00±0,00 (βλ. Πίνακα 3). 

Πίνακας 3. Μέσες τιμές και τυπικές αποκλίσεις ανά σχηματισμένη ομάδα και ατομικά 
χαρακτηριστικά μαθητών 

Ομάδα 
T1 T2 T3 T4 T5 

Μ.Ο. Τ.Α. Μ.Ο. Τ.Α. Μ.Ο. Τ.Α. Μ.Ο. Τ.Α. Μ.Ο. Τ.Α. 

A 18,83 0,75 30,50 1,04 8,33 0,52 2,00 0,00 3,83 0,75 
B 15,60 1,14 27,80 0,45 6,80 0,45 1,20 0,45 2,80 0,45 

Γ 25,25 0,96 37,75 0,96 10,00 0,00 3,00 0,00 5,00 0,00 
Δ 21,50 1,05 32,83 1,33 9,33 0,52 3,00 0,00 5,00 0,00 

Οι τιμές των συντελεστών μεταβλητότητας, για την αξιολόγηση της ομοιογένειας μέσα 
στην κάθε ομάδα που σχηματίστηκε μέσω αλγορίθμου DE, απέδωσε τιμές από 0,00 έως 0,37 
(βλ. Πίνακα 4). Οι τιμές αυτές δηλώνουν υψηλού επιπέδου ομοιογένεια. 

Πίνακας 4. Συντελεστές μεταβλητότητας (coefficient of variation, Cv) ανά σχηματισμένη 
ομάδα και ατομικά χαρακτηριστικά μαθητών 

Ομάδα 
Μέλη 

ομάδας 
T1 T2 T3 T4 T5 

A 6 0,04 0,03 0,06 0,00 0,20 

B 5 0,07 0,02 0,07 0,37 0,16 

Γ 4 0,04 0,03 0,00 0,00 0,00 

Δ 6 0,05 0,04 0,06 0,00 0,00 

Τέλος, από τα αποτελέσματα του ελέγχου Kruskal-Wallis προέκυψε ότι οι τέσσερις ομάδες 
διαφέρουν σημαντικά ως προς την νοημοσύνη των μαθητών [χ2 (3)=18,67, p=0,000<0,001, 
dCohen=6,9, η2=0,92] τη μαθηματική τους ικανότητα [χ2 (3)=18,23, p=0,000<0,001, dCohen=5,9, 
η2=0,90], τους βαθμούς που τους απέδωσαν οι εκπαιδευτικοί τους [χ2 (3)=17,62, p=0,001<0,01, 
dCohen=4,9, η2=0,86], τις δυσκολίες που αντιμετωπίζουν [χ2 (3)=19,26, p=0,000<0,001, dCohen=9,4, 
η2=0,96] και τα χαρακτηριστικά ψυχοκοινωνικής προσαρμογής τους [χ2 (3)=16,92, 
p=0,001<0,01, dCohen=4,3, η2=0,82]. 
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Συμπεράσματα 

Σύμφωνα με τα αποτελέσματα προέκυψε ότι η αξιοποίηση του αλγόριθμου βελτιστοποίησης 
διαφορικής εξέλιξης (DE) μπορεί να βρει αξιόπιστη λύση στο NP-hard πρόβλημα της 
δημιουργίας και του σχηματισμού μαθητικών ομάδων για την εφαρμογή εξατομικευμένων 
προγραμμάτων διαφοροποιημένης διδασκαλίας στα μαθηματικά. Από αυτή τη μεθοδολογία 
προκύπτουν ταξινομημένες και ετερογενείς μεταξύ τους μαθητικές ολιγομελής ομάδες, με τα 
μέλη της κάθε μίας να φέρει ομοιογενή χαρακτηριστικά μαθηματικής ικανότητας, δυσκολιών 
στα μαθηματικά, ψυχοκοινωνικό και γνωστικό προφίλ. Με αυτό τον τρόπο ο εκπαιδευτικός 
μπορεί να διαχειρίζεται με ευκολία το μαθητικό δυναμικό της τάξης του και να γνωρίζει τα 
ιδιαίτερα χαρακτηριστικά της κάθε ομάδας. 

Ως προσέγγιση ομαδοποίησης μπορεί να αξιοποιηθεί τόσο σε παραδοσιακές τάξεις 
διδασκαλίας, όσο και σε ψηφιακές, διευκολύνοντας τον εκπαιδευτικό ρόλο, αφού μπορεί να 
αντισταθμίσει δυσκολίες στην πολυκριτήρια ομαδοποίηση και τη διαφοροποίηση των 
μαθητών (Faber, Glas, & Visscher, 2018) σε ποικίλα γνωστικά αντικείμενα. Πλεονέκτημα της 
μεθοδολογίας αυτής είναι ότι μπορεί να εφαρμοστεί για μεγάλο αριθμό μαθητών και να δώσει 
λύσεις σε πολύ σύντομο χρόνο. Επίσης, δεν υπάρχει περιορισμός στα στοιχεία που μπορεί να 
δεχτεί ως ποσοτικά δεδομένα, ούτε στους αξιολογήσιμους παράγοντες που προκύπτουν από 
την πολύπλευρη και ολιστική αξιολόγηση του μαθητή. Τέλος, προτείνεται η εφαρμογή 
περισσότερων αλγορίθμων βελτιστοποίησης στο εν λόγω πρόβλημα και η σύγκριση αυτών σε 
επίπεδο ταχύτητας και αποτελεσματικότητας, χρησιμοποιώντας πραγματικά δεδομένα 
μαθητών παραδοσιακών ή ψηφιακών τάξεων διδασκαλίας, καθώς και η έρευνα στις στάσεις 
των εκπαιδευτικών απέναντι στο βαθμό που οι ίδιοι είναι ικανοποιημένοι από την 
κατηγοριοποίηση που προκύπτει και το βαθμό που μπορεί αυτή να αποδώσει καρπούς στη 
διδακτική πρακτική. 
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