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Abstract 

Improving energy efficiency in buildings is a major priority and challenge worldwide, as 

the available measures vary in nature, and the resulting decision problem becomes 

complex, due to the numerous decision variables involved, which reflect the alternative 

measures available, and the multiple, usually competitive objectives, in terms of cost, 

energy consumption, environmental concerns, etc., of the respective decision-maker, 

who is usually the user, occupant, and/or owner of the building. Another challenge arises 

from the need to satisfy the preferences of the involved decision-maker, which can be 

hardly prescribed, and should be elicited in a rather indirect way. To address the above 

challenges, a mixed-integer nonlinear mathematical programming model has been 

integrated with the UTASTAR value elicitation method, under an interactive decision-

making framework. To examine the feasibility and efficiency of the integrated decision-

making approach, an existing building is examined under realistic operating conditions. 

The study confirms the feasibility and efficiency of the approach, demonstrates its 

functionality, exploits its qualities, and highlights its strengths, weaknesses and 

limitations. 
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1 Introduction 

Improving energy efficiency in buildings is a major priority and challenge worldwide, as the 

available measures vary in nature, and the involved decision analyst, who is usually an 

architect, engineer, or building expert, faces a complex decision problem (Diakaki et al., 

2008). The complexity arises from the numerous decision variables involved, which reflect 

the alternative measures available (Wulfinghoff, 1999), and the multiple, usually 

competitive objectives, in terms of cost, energy consumption, environmental concerns, 

etc., of the respective decision-maker, who is usually the user, occupant, and/or owner of 

the building. 

Such decision-making problems are addressed through some form of modelling, which 

may be undertaken in various, more, or less complex, ways (Kolokotsa et al., 2009). It is, 

however, important, to adopt modelling approaches that aggregate the objectives in a way 

that leads to specific problem solutions rather than a set of non-dominated solutions (i.e. a 

Pareto set), which are then presented to the decision-maker, to choose the one that is the 

most satisfactory based on his/her own preferences and value system (Diakaki and 

Grigoroudis, 2021). To achieve this, the modeling approach should be capable of 

incorporating the decision-maker's preferences regarding the decision objectives being 

considered—a challenging task in itself—while simultaneously addressing the difficulty of 

eliciting these preferences. 

The above challenges have been addressed (Diakaki and Grigoroudis, 2021) by 

integrating a mixed-integer nonlinear mathematical programming model with the UTASTAR 

value elicitation method (Siskos and Yannacopoulos, 1985) under an interactive decision-

making framework. To ensure validity of the mathematical model, the initially proposed 

approach is extended herein, and simulation is employed to check the model’s 

performance. The proposed extended framework facilitates the decision-making process, 

so that decisions are made, which conform to the value system of the decision-maker, 

without this system having to be prescribed in advance. 

To examine the feasibility and efficiency of the extended decision-making framework, 

under realistic operating conditions, an existing building is examined herein for retrofit 

purposes (Kolokotsa et al., 2012).The study of this building confirms the feasibility and 

efficiency of the approach, demonstrates its functionality, exploits its qualities, and 

highlights its strengths, weaknesses and limitations. The remaining paper is structured in 

four sections. Section 2 presents the examined problem and the challenge, Section 3 

outlines the adopted decision-making approach, Section 4 describes the case study, and 

Section 5 summarizes some concluding thoughts. 

 

2 The problem and the challenge 

The building sector is among the greater energy consumer sectors worldwide, as Figure 1 

clearly demonstrates. 

From an energy point of view, buildings are complex systems considering the building 

envelope and its insulation, the space heating and cooling systems, the water heating 

systems, the lightning appliances and other equipment. In contrast, however, to other 



   

 

3 
 

systems, most buildings have a long lifespan, which means that most of the energy savings 

potential1 lies in the retrofitting and purchasing of new technologies for the existing 

building stock, as well as in the efficient design and establishment of improved standards 

for the new buildings. Energy savings can be generally achieved by using (Li et al., 2022): 

 building shell improvement measures; 

 modern / improved heating, cooling and hot water systems; 

 new materials, technologies and renewable energy sources; 

 smart automation systems; etc. 

 

Figure 1: Final energy consumption by sector, EU, 2022 
(adopted by Eurostat;https://ec.europa.eu/eurostat/statistics-

explained/index.php?title=Energy_statistics_-
_an_overview#Final_energy_consumption) 

 
 

(*) International aviation and maritime bunkers are excluded from category “Final 

energy consumption for transport” 

 

To decide on the best combination of measures to adopt, a decision problem is typically 

developed, to allow for the best possible choice of alternatives. This means that the desired 

outcome of the decision process should include those measures that will prove to be more 

efficient and reliable in the long run, compensating, typically competitive, energy, 

environmental, economic, etc., objectives, and at the same time satisfying the decision-

maker, who in this case is the user, occupant, and/or owner of the building. 

The total possible solutions to the decision problem outlined above are practically 

unlimited (Wulfinghoff, 1999) and the typical approach involves: 

 collection of data and creation of a reference building; 

 definition of alternative actions; 

 evaluation of actions using simulation techniques; and 

 subjective final choice or choice supported using multi-criteria decision analysis 

techniques. 

The strong points of this approach are summarized in two points. The approach 

                                                   
1https://www.iea.org/energy-system/buildings [last accessed 26.11.2024] 
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provides in a quantified manner the effects of the examined alternatives, and fully utilizes 

the experience and knowledge of the building expert, that is the person who implements 

the approach. At the same time, however, the approach suffers from two main drawbacks. 

Through this approach, only a small finite number of alternatives may be considered. As 

the number of alternatives increases, the required computing load increases too, and may 

become even impossible to perform the computations. On the other hand, as the number 

of alternatives to consider decreases to compensate for the previous problem, the 

likelihood of finding not just the best, but even a good solution diminishes. Moreover, the 

experience and knowledge of the building expert determines both the solutions to be 

considered and the final choice, which might not always be the most effective method. 

Due to the weak elements of the typical approach, other efforts have been studied and 

proposed, which suggest modelling the problem as a multi-objective optimization one and, 

depending on the resulting/pursued problem formulation solve it, if possible, with some 

mathematical programming technique, or try a genetic algorithm or any other heuristic 

approach capable to handle it (Diakaki et al., 2008, 2010; Diakaki and Grigoroudis,2013). 

The aim is to reach a single decision that satisfies the decision-maker, rather than a Pareto 

optimal set, which would then require further treatment to lead to a single suggestion to 

the decision-maker, a fact that gives rise to another problem. The decision-maker’s 

preferences are unknown and hard to assess. 

To address the above problems, an interactive mathematical programming approach 

has been adopted (Diakaki and Grigoroudis, 2021). This approach assists the development 

of a multi-objective decision model that incorporates decision-maker’s preferences, elicited 

via the assessment of his/her utility function with the assistance of the UTASTAR method 

(Siskos and Yannacopoulos, 1985).The approach facilitates the decision-making process, so 

that decisions are made that conform to the value system of the decision-maker, without 

this system having to be prescribed in advance. To ensure the validity of the employed 

mathematical programming model, the initially developed decision-making framework is 

enhanced by integrating simulation specifically for model validation. 

 

3 The interactive decision-making approach 

The general idea of the proposed approach starts with the formulation of the decision 

problem as a multi-objective decision problem of the following form (Diakaki et al., 2010): 

min[g1(x), g2(x), …, gn(x)] subject to xX 

where 

 x=(x1, x2,…, xm) is the vector of m binary or continuous decision variables reflecting 

alternative choices (e.g., doors’ and windows’ types, structures of multi-layer 

components such as walls, ceilings, and floors, materials to be used for their 

construction, and systems that can be used for heating, cooling and hot water 

supply); 

 XRm is the feasible region or decision space of the problem under study, which is 

implicitly dictated by a set of constraints concerning the decision variables and 

their intermediary relations; and 

 g1(x), g2(x), …, gn(x) are the values of n considered objectives. 
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This problem is then solved under the integrated and interactive framework graphically 

depicted in Figure 2. 

 

Figure 2: The integrated and interactive decision framework 
 

 
 

More specifically, the whole decision process is undertaken in two major phases: 

 Phase 1: In the first phase, a multi-objective mathematical programming model 

is formulated as proposed in Diakaki et al. (2010). The performance of this 

model is examined via simulation means as described in Diakaki et al. (2013), 

and if it is acceptable, it is used to determine, for each considered objective, an 

ideal and an anti-ideal solution, as well as a compromise solution for the whole 

problem at hand. 

 Phase 2: The ideal, anti-ideal and compromise solutions are presented to the 

decision-maker, to examine the level of his/her satisfaction with respect to the 

different objectives considered, and to determine the range of possible 

improvements, if any. This phase is iterative and is iterated as many times as 

necessary to reach a solution that will satisfy the decision-maker. When first 

entering, the decision-maker is shown the basic information generated by 

Phase 1, i.e. the ideal, anti-ideal and compromise solutions, and is asked to 

express his/her satisfaction with respect to the compromise solution. If the 

decision-maker is not satisfied by any of the objectives achieved in the 

compromise solution, the multi-objective decision problem has no satisfactory 

solution, and the problem should be reviewed and revised, and then restart the 

whole procedure from Phase 1. If the decision-maker is fully satisfied with the 

compromise solution, then the decision-making process comes to an end, while 
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if the decision-maker is satisfied in some objectives but not all, based on the 

information generated through Phase 1, and the objectives suggested by the 

decision-maker for improvement, a reference set of possible objective values 

(profiles) is developed, and the decision-maker is asked to rank order them. 

Based on this ranking, the utility function of the decision-maker is assessed with 

the assistance of the UTASTAR method, and it is then used to reformulate the 

decision problem and solve the resulting problem. The new solution is shown to 

the decision-maker and Phase 2 is repeated if the decision-maker asks for 

further improvements. 

The details of the iterative process may be found in Diakaki and Grigoroudis (2021), 

while a realistic application is presented in the following section, based on an existing 

building, which is considered for retrofit purposes. 

 

4 Case study 

The building considered herein is a 50 m2 building located in Iraklion, Crete, Greece, used 

and operated as a typical office. Table 1 summarizes the characteristics of this building, as 

determined in the frame of a previous study (Kolokotsa et al., 2012). 

 

Table 1: Summary of the characteristics of the considered building 
 

Generics 
Operation hours 
(excluding national holidays) 

Monday & Wednesday 08:00-14:30 
Tuesday, Thursday & Friday 08:00-14:30 &17:00-
21:00 

Orientation North-South 
Building envelope characteristics 
Walls 3-layer outer walls (insulation, brick, & plasterboard) 

with thermal conductivities of insulation, brick and 
plasterboard layers equal to 0.04, 0.89, and 0.14 
W/mK, respectively 

Roof 2-layer ceiling (concrete & insulation) with thermal 
conductivities of concrete, and insulation layers 
equal to 2.1, and 0.04 W/mK, respectively 

Windows Double glazing windows with thermal transmittance 
U=1.4 W/m2K and effective total solar energy 
transmittance g=58.9% 

Floor Single layer floor (concrete) with thermal 
conductivity equal to 2.1 W/mK 

Building services 
Single system for both cooling 
& heating 

A/C Inverter of 3.4 kW (electricity) 

 

Based on an indoor environmental conditions’ analysis (Kolokotsa et al., 2012), the 

energy requirements of the building have been identified to be mostly due to increased 

cooling load during the summer season, attributed mainly to the climatic conditions in 

Crete, Greece. For the same reason, energy consumption for heating is only a small portion 

of the total energy demand. 

Given the above, to reduce the energy load of the building, the following alternatives 

have been considered as being the most appropriate (Diakaki et al., 2013): 

 increase of roof insulation; 

 replacement of doors and windows with others that will prevent the high levels 
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of solar radiation; 

 replacement of the heating/cooling system with a more efficient one. 

 

Table 2: Alternative window/door types 
 

Type U value 
 
(W/m2K) 

Effective total solar 
energy transmittance 
(%) 

Cost 
 
(Euros/m2) 

1 Insulating Xenon 0.40 0.408   85 
2 Insulating Krypton 0.70 0.407   90 
3 Low SHGC Argon, gold 1.26 0.212 100 

 

Table 3: Alternative electrical heating/cooling systems 
 

Type Coefficient of 
Performance 

Cost 
(Euros) 

1 A/C Inverter of 3.8 kW 2.10   700 
2 A/C Inverter of 5.3 kW 2.30   900 
3 A/C Inverter of 7.0 kW 2.50 1300 

 

Tables 2 and 3 summarize the characteristics and costs of the alternative solutions 

considered. An additional cost of 150 Euros/m3 is also considered for the ceiling’s insulation 

material, which due to space limitations may not exceed 0.10m totally. The values in Tables 

2 and 3 were identified in a previous study of the building (Diakaki et al., 2013). 

For the considered building, a detailed TRNSYS simulation model was developed 

(Kolokotsa et al., 2012), which allows for the evaluation of alternative retrofit solutions. 

The simulation model was validated against real data, thus ensuring an acceptable level of 

representation of reality. 

The application of the multi-objective decision modelling approach considered herein to 

the decision problem at hand leads to a mathematical model of the form generally 

presented in Section 3, which aims at determining measures that minimize the following 

two objectives: 

 the primary energy consumption g1(x); and 

 the initial investment cost g2(x). 

These objectives are competitive as the cost-efficient solutions are typically less 

environmentally friendly and vice versa. Therefore, searching for a solution that would be 

globally optimal is meaningless. Instead, a feasible solution that will comply as much as 

possible with the preferences and value system of the involved decision-maker is pursued, 

as described below. 

To start with, the developed multi-objective decision model is first applied, and then, 

several simulation investigations are performed to study and evaluate the quality of the 

retrofit alternatives proposed by this model. The results of the simulation investigations 

confirm, as depicted in Figure 3 that, despite its reduced precision compared to the 

corresponding simulation model of the building, the decision model allows for the realistic 

comparative evaluation of the considered alternatives. More specifically, as Figure 3 

graphically displays, the values of the considered objectives show the same trend either 

calculated via the simulation model (see Figure 3a), or calculated via the decision model, 

(see Figure 3b). 

The above behavior suggests that the decision model is successful in capturing the 
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significant elements of the building operation, thus suggesting solutions that can satisfy the 

decision-maker. It is therefore suitable for use in the frame of the decision process 

presented in Section 3 and graphically displayed in Figure 2. 

 

Figure 3: TRNSYS simulation validation of the performance of the decision 
model 

 

 
(a) Decision model results (p1[0,1] is a weight coefficient expressing the preference of 

the decision-maker towards the decrease of annual primary energy consumption; 

when p1=0, the decision-maker cares only about cost decrease, while for p1=1 

he/she is indifferent about cost) 

 
(b) Simulation model results (scenario 1 corresponds to the do-nothing case, while 

scenarios 2 to 6 explore the decisions suggested by the decision model, for the p1 

values 0, 0.25, 0.5, 0.75 and 1, respectively) 

 

In Phase 1 of the proposed approach (see also Figure 2), the individual objectives of the 

examined decision problem are minimized and maximized individually, to establish the 

ideal and anti-ideal solutions to the problem. In addition, an initial compromise solution is 

identified. Table 4 summarizes the outcomes of Phase 1, while Table 5 summarizes the 

basic information that has been generated through this phase and will be used in the next 

one, to assess whether a satisfactory solution has already been identified or whether the 

process of finding a satisfactory solution should continue. It is important to note that the 

rate of closeness shown in Table 5 reflects the quality of the solution achieved for each 

objective considered; lower values correspond to better solutions. 
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In the second phase, the basic information obtained through Phase 1 is shown to the 

decision-maker, and it is assumed that the decision-maker is not satisfied with the cost that 

results from the compromise solution. This means that, according to the considered 

decision framework, the utility function of the decision-maker should be developed, to 

assist the continuation of the decision-making process. To this end, the profiles displayed in 

Table 6 are developed, the decision-maker ranks the profiles (see last column in Table 6), 

UTASTAR is fed with all this information, and the utility functions displayed graphically in 

Figure 4 are generated. 

Using the generated utility functions, the decision problem is reformulated so that the 

resulting decision problem aims at the maximization of the decision-maker’s global utility. 

The solution to this problem is summarized in Table 7, and is assumed to satisfy the 

decision-maker, thus leading to the end of the decision-making process. Table 8 

summarizes the final solution to the examined problem and compares it with the initial 

one. 

 

Table 4: Summary of Phase 1 outcomes 
 

Decisions and 
objectives 

Type of Solution 
Minimize Maximize Compromise 
g1(x) g2(x) g1(x) g2(x) 

Window/Door type 3 1 2 3 3 
Roof insulation 
thickness (m) 

0.07 0 0 0.07 0.01 

Heating/Cooling 
system 

3 1 1 3 3 

g1(x): Primary energy 
consumption 
(MJ/year) 

15585.43 21508.98 21822.66 15585.43 16882.07 

g2(x): Initial 
investment cost (€) 

2916.62 1625.91 1680.38 2916.62 2463.36 

 

Table 5: Basic information generated in Phase 1 
 

Information Primary Energy 
Consumption 
(MJ/Year) 

Initial Investment 
Cost 
(€) 

Ideal solution per objective 15585.43 1625.91 
Anti-ideal solution per objective 21822.66 2916.62 
Initial compromise solution 16882.07 2463.36 
Rate of closeness of initial compromise 
solution to the ideal solution 

20.79% 64.88% 

 

Table 6: Reference set of alternative profiles 
 

Profile Primary Energy 
Consumption 
(MJ/Year) 

Initial Investment 
Cost 
(€) 

Decision-maker’s 
ranking 

a0 15585 2463 3 
a1 17145 2254 2 
a2 18704 2045 1 
a3 20263 1835 4 
a4 21823 1626 5 

 

As the comparison of the final with the initial solution reveals (see Tables 7 and 8), the 

decision-maker was not satisfied by the initial solution due to the resulting cost, which was, 
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by his/her assumed standards, far from its ideal value; it had a high rate of closeness to the 

ideal solution, compared to the other objective. The final solution decreased the rate of 

closeness, that is, it offered a less costly alternative. The cost decrease resulted in an 

increase of the energy consumption, but at an acceptable level for the assumed decision-

maker. 

 

Figure 4: Normalized marginal utility functions 
 

  
(a) for primary energy consumption (b) for initial investment cost 

 

Table 7: Summary of basic information generated by both phases 
 

Information Primary Energy 
Consumption 
(MJ/Year) 

Initial Investment 
Cost 
(€) 

Ideal solution per objective 15585.43 1625.91 
Initial compromise solution 16882.07 2463.36 
Rate of closeness of initial compromise 
solution to the ideal solution 

20.79% 64.88% 

New compromise solution 18942.50 1989.62 
Rate of closeness of new compromise 
solution to the ideal solution 

53.82% 43.43% 

 

Table 8: Initial and final compromise solution 
 

Decisions and objectives Compromise solution 
Initial Final 

Window/Door type 3 3 
Roof insulation thickness (m) 0.01 0.03 
Heating/Cooling system 3 1 
g1(x): Primary energy consumption (MJ/year) 16882.07 18942.50 
g2(x): Initial investment cost (€) 2463.36 1989.62 

 

5 Conclusions 

This paper has discussed an interactive mathematical programming approach designed to 

improve energy efficiency in buildings. This method addresses a challenging problem 

characterized by multiple competing objectives and numerous decision variables. The 

complexity is heightened by the need for the decision-maker to express preferences 

regarding these objectives. 

The approach offers a structured framework that simultaneously evaluates all possible 

combinations of alternative actions, accounting also for logical, physical, and technical 

constraints, and enabling the integration of the preferences and values of the decision-

maker without requiring prior explicit definition. Thus, it provides a systematic foundation 

for developing a decision support system (DSS) to assist decision-makers in selecting the 



   

 

11 
 

most suitable measures from a vast array of options. 

While primarily focused on energy efficiency, the approach presented and discussed 

herein is adaptable to other domains with adjustments for domain-specific objectives and 

preferences (see e.g., Zopounidis et al., 1998). It also demonstrates that multiple methods 

can work together synergistically to identify feasible and satisfactory solutions to various 

decision problems, aligning with the involved decision-makers’ preferences. Achieving such 

outcomes requires decision analysts to leverage all available tools that are appropriate and 

tailored to the specific challenges they encounter. 
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