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A user interactive decision-making
approach for the improvement of
energy efficiency in buildings: A
realistic case study

Christina Diakaki”

Abstract

Improving energy efficiency in buildings is a major priority and challenge worldwide, as
the available measures vary in nature, and the resulting decision problem becomes
complex, due to the numerous decision variables involved, which reflect the alternative
measures available, and the multiple, usually competitive objectives, in terms of cost,
energy consumption, environmental concerns, etc., of the respective decision-maker,
who is usually the user, occupant, and/or owner of the building. Another challenge arises
from the need to satisfy the preferences of the involved decision-maker, which can be
hardly prescribed, and should be elicited in a rather indirect way. To address the above
challenges, a mixed-integer nonlinear mathematical programming model has been
integrated with the UTASTAR value elicitation method, under an interactive decision-
making framework. To examine the feasibility and efficiency of the integrated decision-
making approach, an existing building is examined under realistic operating conditions.
The study confirms the feasibility and efficiency of the approach, demonstrates its
functionality, exploits its qualities, and highlights its strengths, weaknesses and
limitations.
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Keywords: Buildings’ energy efficiency improvement, Multi-objective optimization, Multi-
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1 Introduction

Improving energy efficiency in buildings is a major priority and challenge worldwide, as the
available measures vary in nature, and the involved decision analyst, who is usually an
architect, engineer, or building expert, faces a complex decision problem (Diakaki et al.,
2008). The complexity arises from the numerous decision variables involved, which reflect
the alternative measures available (Wulfinghoff, 1999), and the multiple, usually
competitive objectives, in terms of cost, energy consumption, environmental concerns,
etc., of the respective decision-maker, who is usually the user, occupant, and/or owner of
the building.

Such decision-making problems are addressed through some form of modelling, which
may be undertaken in various, more, or less complex, ways (Kolokotsa et al., 2009). It is,
however, important, to adopt modelling approaches that aggregate the objectives in a way
that leads to specific problem solutions rather than a set of non-dominated solutions (i.e. a
Pareto set), which are then presented to the decision-maker, to choose the one that is the
most satisfactory based on his/her own preferences and value system (Diakaki and
Grigoroudis, 2021). To achieve this, the modeling approach should be capable of
incorporating the decision-maker's preferences regarding the decision objectives being
considered—a challenging task in itself—while simultaneously addressing the difficulty of
eliciting these preferences.

The above challenges have been addressed (Diakaki and Grigoroudis, 2021) by
integrating a mixed-integer nonlinear mathematical programming model with the UTASTAR
value elicitation method (Siskos and Yannacopoulos, 1985) under an interactive decision-
making framework. To ensure validity of the mathematical model, the initially proposed
approach is extended herein, and simulation is employed to check the model’s
performance. The proposed extended framework facilitates the decision-making process,
so that decisions are made, which conform to the value system of the decision-maker,
without this system having to be prescribed in advance.

To examine the feasibility and efficiency of the extended decision-making framework,
under realistic operating conditions, an existing building is examined herein for retrofit
purposes (Kolokotsa et al., 2012).The study of this building confirms the feasibility and
efficiency of the approach, demonstrates its functionality, exploits its qualities, and
highlights its strengths, weaknesses and limitations. The remaining paper is structured in
four sections. Section 2 presents the examined problem and the challenge, Section 3
outlines the adopted decision-making approach, Section 4 describes the case study, and
Section 5 summarizes some concluding thoughts.

2 The problem and the challenge

The building sector is among the greater energy consumer sectors worldwide, as Figure 1
clearly demonstrates.

From an energy point of view, buildings are complex systems considering the building
envelope and its insulation, the space heating and cooling systems, the water heating
systems, the lightning appliances and other equipment. In contrast, however, to other



systems, most buildings have a long lifespan, which means that most of the energy savings
potential® lies in the retrofitting and purchasing of new technologies for the existing
building stock, as well as in the efficient design and establishment of improved standards
for the new buildings. Energy savings can be generally achieved by using (Li et al., 2022):

o building shell improvement measures;

e modern/improved heating, cooling and hot water systems;

e new materials, technologies and renewable energy sources;

e smart automation systems; etc.

Figure 1: Final energy consumption by sector, EU, 2022
(adopted by Eurostat;https://ec.europa.eu/eurostat/statistics-
explained/index.php?title=Energy statistics -
an_overview#Final energy consumption)
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(*) International aviation and maritime bunkers are excluded from category “Final
energy consumption for transport”

To decide on the best combination of measures to adopt, a decision problem is typically
developed, to allow for the best possible choice of alternatives. This means that the desired
outcome of the decision process should include those measures that will prove to be more
efficient and reliable in the long run, compensating, typically competitive, energy,
environmental, economic, etc., objectives, and at the same time satisfying the decision-
maker, who in this case is the user, occupant, and/or owner of the building.

The total possible solutions to the decision problem outlined above are practically
unlimited (Wulfinghoff, 1999) and the typical approach involves:

e collection of data and creation of a reference building;

e definition of alternative actions;

e evaluation of actions using simulation techniques; and

e subjective final choice or choice supported using multi-criteria decision analysis
techniques.

The strong points of this approach are summarized in two points. The approach
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provides in a quantified manner the effects of the examined alternatives, and fully utilizes
the experience and knowledge of the building expert, that is the person who implements
the approach. At the same time, however, the approach suffers from two main drawbacks.
Through this approach, only a small finite number of alternatives may be considered. As
the number of alternatives increases, the required computing load increases too, and may
become even impossible to perform the computations. On the other hand, as the number
of alternatives to consider decreases to compensate for the previous problem, the
likelihood of finding not just the best, but even a good solution diminishes. Moreover, the
experience and knowledge of the building expert determines both the solutions to be
considered and the final choice, which might not always be the most effective method.

Due to the weak elements of the typical approach, other efforts have been studied and
proposed, which suggest modelling the problem as a multi-objective optimization one and,
depending on the resulting/pursued problem formulation solve it, if possible, with some
mathematical programming technique, or try a genetic algorithm or any other heuristic
approach capable to handle it (Diakaki et al., 2008, 2010; Diakaki and Grigoroudis,2013).
The aim is to reach a single decision that satisfies the decision-maker, rather than a Pareto
optimal set, which would then require further treatment to lead to a single suggestion to
the decision-maker, a fact that gives rise to another problem. The decision-maker’s
preferences are unknown and hard to assess.

To address the above problems, an interactive mathematical programming approach
has been adopted (Diakaki and Grigoroudis, 2021). This approach assists the development
of a multi-objective decision model that incorporates decision-maker’s preferences, elicited
via the assessment of his/her utility function with the assistance of the UTASTAR method
(Siskos and Yannacopoulos, 1985).The approach facilitates the decision-making process, so
that decisions are made that conform to the value system of the decision-maker, without
this system having to be prescribed in advance. To ensure the validity of the employed
mathematical programming model, the initially developed decision-making framework is
enhanced by integrating simulation specifically for model validation.

3 The interactive decision-making approach

The general idea of the proposed approach starts with the formulation of the decision
problem as a multi-objective decision problem of the following form (Diakaki et al., 2010):
min[ga(x), g2(x), ..., gn(x)] subject to xeX
where
®  X=(X1, X2,..., Xm) is the vector of m binary or continuous decision variables reflecting
alternative choices (e.g., doors’ and windows’ types, structures of multi-layer
components such as walls, ceilings, and floors, materials to be used for their
construction, and systems that can be used for heating, cooling and hot water
supply);
e XcR™Mis the feasible region or decision space of the problem under study, which is
implicitly dictated by a set of constraints concerning the decision variables and
their intermediary relations; and

o gi(x), g2(x), ..., gn(x) are the values of n considered objectives.



This problem is then solved under the integrated and interactive framework graphically
depicted in Figure 2.
Figure 2: The integrated and interactive decision framework
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More specifically, the whole decision process is undertaken in two major phases:

Phase 1: In the first phase, a multi-objective mathematical programming model
is formulated as proposed in Diakaki et al. (2010). The performance of this
model is examined via simulation means as described in Diakaki et al. (2013),
and if it is acceptable, it is used to determine, for each considered objective, an
ideal and an anti-ideal solution, as well as a compromise solution for the whole
problem at hand.

Phase 2: The ideal, anti-ideal and compromise solutions are presented to the
decision-maker, to examine the level of his/her satisfaction with respect to the
different objectives considered, and to determine the range of possible
improvements, if any. This phase is iterative and is iterated as many times as
necessary to reach a solution that will satisfy the decision-maker. When first
entering, the decision-maker is shown the basic information generated by
Phase 1, i.e. the ideal, anti-ideal and compromise solutions, and is asked to
express his/her satisfaction with respect to the compromise solution. If the
decision-maker is not satisfied by any of the objectives achieved in the
compromise solution, the multi-objective decision problem has no satisfactory
solution, and the problem should be reviewed and revised, and then restart the
whole procedure from Phase 1. If the decision-maker is fully satisfied with the
compromise solution, then the decision-making process comes to an end, while
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if the decision-maker is satisfied in some objectives but not all, based on the
information generated through Phase 1, and the objectives suggested by the
decision-maker for improvement, a reference set of possible objective values
(profiles) is developed, and the decision-maker is asked to rank order them.
Based on this ranking, the utility function of the decision-maker is assessed with
the assistance of the UTASTAR method, and it is then used to reformulate the
decision problem and solve the resulting problem. The new solution is shown to
the decision-maker and Phase 2 is repeated if the decision-maker asks for
further improvements.
The details of the iterative process may be found in Diakaki and Grigoroudis (2021),
while a realistic application is presented in the following section, based on an existing
building, which is considered for retrofit purposes.

4 Case study

The building considered herein is a 50 m? building located in Iraklion, Crete, Greece, used
and operated as a typical office. Table 1 summarizes the characteristics of this building, as
determined in the frame of a previous study (Kolokotsa et al., 2012).

Table 1: Summary of the characteristics of the considered building

Generics

Operation hours Monday & Wednesday 08:00-14:30

(excluding national holidays) Tuesday, Thursday & Friday 08:00-14:30 &17:00-
21:00

Orientation North-South

Building envelope characteristics

Walls 3-layer outer walls (insulation, brick, & plasterboard)

with thermal conductivities of insulation, brick and
plasterboard layers equal to 0.04, 0.89, and 0.14
W/mK, respectively

Roof 2-layer ceiling (concrete & insulation) with thermal
conductivities of concrete, and insulation layers
equal to 2.1, and 0.04 W/mK, respectively

Windows Double glazing windows with thermal transmittance
U=1.4 W/m?K and effective total solar energy
transmittance g=58.9%

Floor Single layer floor (concrete) with thermal
conductivity equal to 2.1 W/mK

Building services
Single system for both cooling A/C Inverter of 3.4 kW (electricity)
& heating

Based on an indoor environmental conditions’ analysis (Kolokotsa et al., 2012), the
energy requirements of the building have been identified to be mostly due to increased
cooling load during the summer season, attributed mainly to the climatic conditions in
Crete, Greece. For the same reason, energy consumption for heating is only a small portion
of the total energy demand.

Given the above, to reduce the energy load of the building, the following alternatives
have been considered as being the most appropriate (Diakaki et al., 2013):

e increase of roof insulation;

e replacement of doors and windows with others that will prevent the high levels



of solar radiation;
e replacement of the heating/cooling system with a more efficient one.

Table 2: Alternative window/door types

Type U value Effective total solar Cost
energy transmittance
(W/mK) (%) (Euros/m?)
1 Insulating Xenon 0.40 0.408 85
2 Insulating Krypton 0.70 0.407 90
3  Low SHGC Argon, gold 1.26 0.212 100

Table 3: Alternative electrical heating/cooling systems

Type Coefficient of Cost
Performance (Euros)
1 A/Clnverter of 3.8 kW 2.10 700
2 A/ClInverter of 5.3 kW 2.30 900
3  A/Clnverter of 7.0 kW 2.50 1300

Tables 2 and 3 summarize the characteristics and costs of the alternative solutions
considered. An additional cost of 150 Euros/m? is also considered for the ceiling’s insulation
material, which due to space limitations may not exceed 0.10m totally. The values in Tables
2 and 3 were identified in a previous study of the building (Diakaki et al., 2013).

For the considered building, a detailed TRNSYS simulation model was developed
(Kolokotsa et al., 2012), which allows for the evaluation of alternative retrofit solutions.
The simulation model was validated against real data, thus ensuring an acceptable level of
representation of reality.

The application of the multi-objective decision modelling approach considered herein to
the decision problem at hand leads to a mathematical model of the form generally
presented in Section 3, which aims at determining measures that minimize the following
two objectives:

e the primary energy consumption gi(x); and

e theinitial investment cost gx(x).
These objectives are competitive as the cost-efficient solutions are typically less
environmentally friendly and vice versa. Therefore, searching for a solution that would be
globally optimal is meaningless. Instead, a feasible solution that will comply as much as
possible with the preferences and value system of the involved decision-maker is pursued,
as described below.

To start with, the developed multi-objective decision model is first applied, and then,
several simulation investigations are performed to study and evaluate the quality of the
retrofit alternatives proposed by this model. The results of the simulation investigations
confirm, as depicted in Figure 3 that, despite its reduced precision compared to the
corresponding simulation model of the building, the decision model allows for the realistic
comparative evaluation of the considered alternatives. More specifically, as Figure 3
graphically displays, the values of the considered objectives show the same trend either
calculated via the simulation model (see Figure 3a), or calculated via the decision model,
(see Figure 3b).

The above behavior suggests that the decision model is successful in capturing the
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significant elements of the building operation, thus suggesting solutions that can satisfy the
decision-maker. It is therefore suitable for use in the frame of the decision process
presented in Section 3 and graphically displayed in Figure 2.

Figure 3: TRNSYS simulation validation of the performance of the decision
model
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(b) Simulation model results (scenario 1 corresponds to the do-nothing case, while
scenarios 2 to 6 explore the decisions suggested by the decision model, for the p:
values 0, 0.25, 0.5, 0.75 and 1, respectively)

In Phase 1 of the proposed approach (see also Figure 2), the individual objectives of the
examined decision problem are minimized and maximized individually, to establish the
ideal and anti-ideal solutions to the problem. In addition, an initial compromise solution is
identified. Table 4 summarizes the outcomes of Phase 1, while Table 5 summarizes the
basic information that has been generated through this phase and will be used in the next
one, to assess whether a satisfactory solution has already been identified or whether the
process of finding a satisfactory solution should continue. It is important to note that the
rate of closeness shown in Table 5 reflects the quality of the solution achieved for each
objective considered; lower values correspond to better solutions.



In the second phase, the basic information obtained through Phase 1 is shown to the
decision-maker, and it is assumed that the decision-maker is not satisfied with the cost that
results from the compromise solution. This means that, according to the considered
decision framework, the utility function of the decision-maker should be developed, to
assist the continuation of the decision-making process. To this end, the profiles displayed in
Table 6 are developed, the decision-maker ranks the profiles (see last column in Table 6),
UTASTAR is fed with all this information, and the utility functions displayed graphically in
Figure 4 are generated.

Using the generated utility functions, the decision problem is reformulated so that the
resulting decision problem aims at the maximization of the decision-maker’s global utility.
The solution to this problem is summarized in Table 7, and is assumed to satisfy the
decision-maker, thus leading to the end of the decision-making process. Table 8
summarizes the final solution to the examined problem and compares it with the initial
one.

Table 4: Summary of Phase 1 outcomes

Decisions and Type of Solution

objectives Minimize Maximize Compromise
g1(x) ga2(x) ga(x) g2(x)

Window/Door type 3 1 2 3 3

Roof insulation 0.07 0 0 0.07 0.01

thickness (m)

Heating/Cooling 3 1 1 3 3

system

gi(x): Primary energy ~ 15585.43 21508.98  21822.66 15585.43 16882.07
consumption

(MJ/year)

g2(x): Initial 2916.62 1625.91 1680.38 2916.62 2463.36
investment cost (€)

Table 5: Basic information generated in Phase 1

Information Primary Energy Initial Investment
Consumption Cost
(MJ/Year) (€)
Ideal solution per objective 15585.43 1625.91
Anti-ideal solution per objective 21822.66 2916.62
Initial compromise solution 16882.07 2463.36
Rate of closeness of initial compromise 20.79% 64.88%

solution to the ideal solution

Table 6: Reference set of alternative profiles

Profile  Primary Energy Initial Investment  Decision-maker’s
Consumption Cost ranking
(MJ/Year) (€)

ao 15585 2463 3

a1 17145 2254 2

az 18704 2045 1

as 20263 1835 4

ER 21823 1626 5

As the comparison of the final with the initial solution reveals (see Tables 7 and 8), the
decision-maker was not satisfied by the initial solution due to the resulting cost, which was,



by his/her assumed standards, far from its ideal value; it had a high rate of closeness to the
ideal solution, compared to the other objective. The final solution decreased the rate of
closeness, that is, it offered a less costly alternative. The cost decrease resulted in an
increase of the energy consumption, but at an acceptable level for the assumed decision-
maker.

Figure 4: Normalized marginal utility functions
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Table 7: Summary of basic information generated by both phases

Information Primary Energy Initial Investment
Consumption Cost
(MJ/Year) (€)

Ideal solution per objective 15585.43 1625.91

Initial compromise solution 16882.07 2463.36

Rate of closeness of initial compromise 20.79% 64.88%

solution to the ideal solution

New compromise solution 18942.50 1989.62

Rate of closeness of new compromise 53.82% 43.43%

solution to the ideal solution

Table 8: Initial and final compromise solution

Decisions and objectives Compromise solution
Initial Final

Window/Door type 3 3

Roof insulation thickness (m) 0.01 0.03

Heating/Cooling system 3 1

g1(x): Primary energy consumption (MJ/year)  16882.07 18942.50

g2(x): Initial investment cost (€) 2463.36 1989.62

5 Conclusions

This paper has discussed an interactive mathematical programming approach designed to
improve energy efficiency in buildings. This method addresses a challenging problem
characterized by multiple competing objectives and numerous decision variables. The
complexity is heightened by the need for the decision-maker to express preferences
regarding these objectives.

The approach offers a structured framework that simultaneously evaluates all possible
combinations of alternative actions, accounting also for logical, physical, and technical
constraints, and enabling the integration of the preferences and values of the decision-
maker without requiring prior explicit definition. Thus, it provides a systematic foundation
for developing a decision support system (DSS) to assist decision-makers in selecting the
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most suitable measures from a vast array of options.

While primarily focused on energy efficiency, the approach presented and discussed
herein is adaptable to other domains with adjustments for domain-specific objectives and
preferences (see e.g., Zopounidis et al., 1998). It also demonstrates that multiple methods
can work together synergistically to identify feasible and satisfactory solutions to various
decision problems, aligning with the involved decision-makers’ preferences. Achieving such
outcomes requires decision analysts to leverage all available tools that are appropriate and
tailored to the specific challenges they encounter.
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