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Abstract 

In the present paper, we consider the fundamental model of Rational Queueing which concerns 

the join-or-balk dilemma of homogeneous strategic customers at the single-server Markovian 

queue with infinite waiting space. This model has been extensively studied under various 

assumptions regarding the information that is available to the customers upon arrival. The 

information assumptions that have appeared in the literature deal mainly with the possibility of 

the customers to observe the queue length before making their decisions (observable model, 

unobservable model, partially observable model, observable with delay model etc.). In the present 

paper, we introduce a new class of models where the information that is communicated to the 

arriving customers concerns the recent customers' decisions. We present various models that 

belong to this class and report some preliminary promising results that show that this kind of 

information is valuable and can lead to good outcomes. 
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1. Introduction 
 
Rational Queueing is the branch of Queueing Theory that focuses on the game-theoretical 

analysis of service systems. The basic assumption of Rational Queueing is that the various 

agents (customers and/or administrators-servers) of a service system are strategic, i.e. they 

make decisions with the objective of maximizing their own utility function that represents 

their desire for service and their dislike for waiting. These ideas started about 50 years ago 

with the pioneering papers of Naor (1969), and Edelson and Hildebrand (1975) who studied 

the join-or-balk dilemma of arriving customers at the single-server Markovian queue with 

infinite waiting space. Naor (1969) focused on the observable model, where the arriving 

customers have the possibility to observe precisely the queue length before making their 

decisions, whereas Edelson and Hildebrand (1975) considered the unobservable 

counterpart, where the decisions are based solely on the economic and operational 

parameters of the system.  

The research in Rational Queueing has been expanded considerably ever since. The 

monograph by Hassin and Haviv (2003) summarizes the main methodological tools in the 

area and fundamental models. Stidham (2009) and Hassin (2016) monographs are also 

devoted to the presentation of methods and results for this branch of Queueing Theory. 

A fundamental issue in Rational Queueing is the impact of the information that is 

provided to the customers. The importance of this issue has been recognized by various 

studies and the interested reader may consult the recent reviews by Hassin (2016) (chapter 

3), Ibrahim (2018), Economou (2021) and Economou (2022). More details are given in the 

literature review in section 2.  

Most papers regarding the influence of the information on strategic customer behavior 

in service systems consider the number of present customers as the key information that is 

provided to the customers. However, this kind of information may not be available in 

practice. One such case occurs when there are independent web-based systems that 

receive the arriving customers that do not have information about what is going on in the 

core service system. This happens frequently when petitions for service are deposited 

through a web-platform and the service consists of several stages that are not monitored 

by the platform. In such a case the platform can provide information about previous 

arrivals and their join decisions but not about the actual congestion. 

The present paper aims to introduce a family of models that deal with the information 

that the customers may receive about previous customers' decisions. The models are built 
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for the situation of the join-or-balk dilemma of strategic customers in the M/M/1 queue 

(unobservable M/M/1 model of Edelson and Hildebrand (1975)). 

The paper is structured as follows: In Section 2 we present a brief literature review 

regarding the problem of information provision to strategic customers of a queueing 

system. In Section 3, we present the main hypotheses concerning the study and, in Section 

4, we describe the framework for the study of strategic customer behavior in a service 

system and then adapt the framework for the study of the join-or-balk dilemma for the 

arriving customers at a queue. In Section 5, we describe in detail several types of models 

regarding the information that can be provided to the customers about the decisions of 

previous customers and discuss their performance evaluation under arbitrary strategies. In 

Section 6, we present some preliminary analytical results on a simple information case. In 

Section 7, we show several numerical results that illustrate how this simple information 

case compares with the classical unobservable and observable models. The study finishes 

with a list of the results in Section 8 and with conclusions and directions for future research 

that are presented in Section 9.  

2. Literature review 

The literature that focuses on the effect of information on strategic customer behavior in 

service systems is very extensive. Two key references are the pioneering papers of Hassin 

(1986) and Chen and Frank (2004) who compared the equilibrium performance of the 

observable and unobservable versions of the single-server Markovian queue with strategic 

customers who face the join-or-balk dilemma. These papers showed that it is advantageous 

in some cases to reveal the queue length and in other cases to conceal it. 

Various authors considered models that lie between the two extreme information 

versions (observable and unobservable) of the above situation. More specifically, the 

following categories of models have appeared in the literature (see Economou (2021) and 

Economou (2022)): 

 Systems with imperfect observation structure. In such systems, the customers 

receive imperfect information about the queue length (see e.g., Economou and 

Kanta (2008), Guo and Zipkin (2009), and Hassin and Koshman (2017)). 

 Systems with delayed observation structure. In such systems, the customers 

observe the queue length with some delay (see e.g., Burnetas, Economou and 

Vasiliadis (2017), and Hassin and Roet-Green (2020)).  
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 Systems with mixed observation structure. In such models, only a fraction of the 

customers observe the queue length (see e.g., Economou and Grigoriou (2015), 

and Hu, Li and Wang (2018)). 

 Systems with alternating observation structure. Under such an information 

structure, a system alternates between observable and unobservable periods 

(see e.g., Dimitrakopoulos, Economou and Leonardos (2021)).  

 Systems with non-standard or augmented observation structure. In such 

systems, the customers observe system features other than or in addition to 

queue length, like the state of the server or of a random environment etc. (see 

e.g., Burnetas and Economou (2007), Economou and Manou (2013), and 

Logothetis and Economou (2023)). 

Some other important studies that deal with the influence of information on strategic 

customer behavior in service systems have been reported in Allon et al. (2011), Armony 

and Maglaras (2004), Cui and Veeraraghavan (2016), Debo and Veeraraghavan (2016), Guo 

and Zipkin (2007), Hassin and Roet-Green (2017), Hassin and Snitkovsky (2017), Haviv and 

Kerner (2007), Hassin and Oz (2016), Hassin and Oz(2018), Ibrahim et al. (2017), Inoue et 

al. (2023), Kerner (2011), Veeraraghavan and Debo (2009), Veeraraghavan and Debo 

(2011), Wang et al. (2018), Wang and Hu (2019), and Yu et al. (2018). In these works, the 

authors examine various important aspects of information influence on customers' 

behavior in service systems. For detailed summaries and comments, see Hassin (2016), 

Economou (2021), Economou (2022) and Ibrahim (2018).  

3. Hypotheses 

Throughout the present study we adopt the usual hypotheses that concern the economic 

(game-theoretic) analysis of queueing systems. More specifically: 

 The queueing systems under study have reached a steady state, in the sense that 

their various parameters do not change over time. Moreover, the systems have run 

for a long time so that any effects of the initial conditions have been vanished. 

 The customers are assumed to be fully rational, in the sense that they can assess 

the effects of their actions, taking into account other customers’ actions, accurately 

and effectively. 

 The customers are selfish and want to maximize their own utility without bothering 
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about the effect of their actions on other customers or on the administrator of the 

system. 

4. The framework 

In the study of strategic customer behavior in queueing systems, the fundamental concepts 

of classical Game Theory are not directly applicable since there are two significant 

problems: The first is the fact that the number of customers is infinite, since the potential 

customers of a service system are infinite. The second is that the customers-players do not 

make simultaneously their decisions since they arrive sequentially during an infinite time 

horizon extending to both directions in time. These problems are bypassed by defining 

analogous concepts and exploiting the homogeneity of the various classes of customers. 

However, in the present study, to keep the framework as simple as possible, we will 

assume that all customers are homogeneous.  

In the case of homogeneous strategic customers, a Queueing Game among them is 

specified by the set of their common strategies, 𝑆, and from the utility function 𝑈(𝑞, 𝑞′|𝑖) 

that specifies the payoff of a customer that uses strategy 𝑞 then all other customers follow 

strategy 𝑞′ and the information 𝑖 ∈ 𝐼 is provided (where 𝐼 denotes the set of all possible 

information states-values).  

Consider, now, a tagged customer. Given that a strategy 𝑞′ is used by the population of 

(the other) customers, a strategy 𝑞∗of the tagged customer is said to be a best response 

against 𝑞′, if 𝑞∗maximizes 𝑓(𝑞) = 𝑈(𝑞, 𝑞′|𝑖), for all possible values of the information𝑖. The 

set of best responses against 𝑞′ is denoted by 𝐵𝑅(𝑞′). A strategy 𝑞𝑒 is said to be a 

(symmetric) equilibrium, if it is best response against itself, i.e., if 𝑞𝑒 ∈ 𝐵𝑅(𝑞𝑒).  

A basic step for the study of strategic customer behavior concerns the computation of 

the payoff function 𝑈(𝑞, 𝑞′|𝑖). The fundamental assumption for this computation is that if 

we consider a tagged customer who follows a strategy 𝑞, when all others follow a 

strategy 𝑞′, then the tagged customer's strategy does not influence the steady-state 

behavior of the system. Indeed, the general behavior of the system and the corresponding 

performance measures are determined by the strategy 𝑞′ that the other customers follow, 

since the impact of the tagged customer is negligible. Moreover, it is assumed that the 

system is in a stochastic steady state. To determine the equilibrium customer strategies in 

a queueing system, a general methodology is applied, using the following steps: 

 Step 1: The steady-state behavior of the system under an arbitrary strategy 𝑞′ of 

the population of the customers is studied. 
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 Step 2: The utility function 𝑈(𝑞, 𝑞′|𝑖) of a tagged customer that follows strategy𝑞, 

when all other customers follow strategy 𝑞′, and the information 𝑖 is given, is 

computed.  

 Step 3: The best response 𝐵𝑅(𝑞′) of the tagged customer against an arbitrary 

strategy, 𝑞′, of the population of the customers is computed. 

 Step 4: All strategies with the property 𝑞𝑒 ∈ 𝐵𝑅(𝑞𝑒) are identified. These are 

exactly the equilibrium strategies.  

A related problem from a social planner's point of view is the maximization of the social 

welfare per time unit. Then, a socially optimal strategy 𝑞𝑠𝑜𝑐  solves the optimization 

problem 𝑚𝑎𝑥 𝑞′∈𝑆𝑆𝑊(𝑞
′), where 𝑆𝑊(𝑞′) stands for the social welfare function, when the 

strategy 𝑞′ is followed by the population of customers. 

In the case of the join-or-balk dilemma, a strategy𝑞, of an arriving customer, 

corresponds to a vector of join probabilities for the various values of the information, 𝑖. 

Therefore, 𝑞 = (𝑞(𝑖): 𝑖 ∈ 𝐼), where 𝑞(𝑖) is the join probability for a customer that receives 

information 𝑖upon arrival. Then, the utility function has the form 

𝑈(𝑞, 𝑞′|𝑖) = (1 − 𝑞(𝑖)) ∙ 0 + 𝑞(𝑖)(𝑅 − 𝐶𝐸[𝑊|𝑞′, 𝑖]),                             (4.1)                 

where 

 𝑅 is the service value, 

 𝐶 is the waiting cost per time unit, 

 𝑞 = (𝑞(𝑖): 𝑖 ∈ 𝐼) is the strategy of a tagged customer, 

 𝑞′ = (𝑞′(𝑖): 𝑖 ∈ 𝐼) is the strategy of the population of the (other) customers, 

 𝐸[𝑊|𝑞′, 𝑖] is the expected total sojourn time of the tagged customer in the system, 

if she decides to enter, when the information𝑖 is given and the population follows 

strategy 𝑞′. 

5. The models 

We consider a single server queue with infinite waiting space, where strategic customers 

arrive according to a Poisson process at rate 𝜆 and have independent exponential service 

times with rate 𝜇, independent of the arrival process. The queue discipline is the First-

Come-First-Served (FCFS). We define 𝜌 = 𝜆

𝜇
  to be the utilization rate of the model. 

Arriving customers at this M/M/1 queue face the dilemma of whether to join or balk 

with the objective of maximizing their own utilities. Each customer receives a reward of 𝑅 

units upon service completion and accumulates waiting costs at rate 𝐶 as long as she stays 
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in the system. We define 𝜈 = 𝑅𝜇

𝐶
 to be the normalized service value, which corresponds to 

the ratio of the service value over the mean cost of a service time.  

The operational and economic parameters of the system are assumed to be common 

knowledge for all customers. This is a reasonable assumption when the population of 

customers visits the system recurrently.  

In the classical Edelson and Hildebrand (1975) unobservable model, the 4-step 

procedure for identifying the equilibrium strategies proceeds as follows: 

 Step 1: Since the customers receive no information in this case, a customer's 

strategy is just her join probability 𝑞. Under an arbitrary strategy, 𝑞′, the system 

behaves as an M/M/1 queue with arrival rate 𝜆𝑞′ and service rate  𝜇. The state of 

the system is represented by a continuous-time Markov chain 𝑁(𝑡) which records 

the number of customers in the system. Its transition matrix is given as 

𝑄 =

(

 
 

−𝜆𝑞′ 𝜆𝑞′ 0 0 0 ⋯

𝜇 −(𝜆𝑞′ + 𝜇) 𝜆𝑞′ 0 0 ⋯

0 𝜇 −(𝜆𝑞′ + 𝜇) 𝜆𝑞′ 0 ⋯

0 0 𝜇 −(𝜆𝑞′ + 𝜇) 𝜆𝑞′ ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱)

 
 

. 

 Step 2: The waiting time of an arriving customer at an M/M/1 queue with arrival 

rate 𝜆𝑞′ and service rate 𝜇 is known to be exponentially distributed with rate 𝜇 −

𝜆𝑞′. Hence, the expected total sojourn time, if she decides to join is 1

𝜇−𝜆𝑞′
. Therefore, 

the utility function, given by (4.1), assumes the form 

𝑈(𝑞, 𝑞′) = (1 − 𝑞) ∙ 0 + 𝑞 ∙ (𝑅 − 𝐶

𝜇−𝜆𝑞′
).                             (5.1)   

 Step 3: Since 𝑈(𝑞, 𝑞′) is a linear function of𝑞, its maximum occurs at 𝑞 = 1 

(respectively at 𝑞 = 0 or for every 𝑞 ∈ [0,1]), if 𝑅 − 𝐶

𝜇−𝜆𝑞′
> 0 (respectively if 𝑅 −

𝐶

𝜇−𝜆𝑞′
< 0 or 𝑅 − 𝐶

𝜇−𝜆𝑞′
= 0). 

Therefore, the set of best responses, 𝐵𝑅(𝑞′), of a tagged customer against an 

arbitrary strategy, 𝑞′, of the population of the customers is given as 

𝐵𝑅(𝑞′) = {

{0}, if𝑞′ > 𝑞𝑒̅̅ ̅,
[0,1], if𝑞′ = 𝑞𝑒̅̅ ̅,
{1}, if𝑞′ < 𝑞𝑒̅̅ ̅,

 

where 

𝑞𝑒̅̅ ̅ =
1

λ
(μ −

𝐶

𝑅
). 

is the root of 𝑅 −
𝐶

μ−λ𝑞′
= 0.  

 Step 4: We can now proceed to the computation of the equilibrium strategies:  
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The strategy of `always balk' (𝑞𝑒 = 0) is equilibrium strategy, if and only if 0 ∈

𝐵𝑅(0), i.e., 0 ≥ 𝑞𝑒̅̅ ̅, which reduces to 𝑅 ≤
𝐶

μ
. 

A strategy 𝑞𝑒 ∈  (0,1) is equilibrium strategy, if and only if 𝑞𝑒 ∈ 𝐵𝑅(𝑞𝑒), i.e., 𝑞𝑒 =

𝑞𝑒̅̅ ̅, which reduces to 𝑞𝑒 =
1

λ
(μ −

𝐶

𝑅
). This is valid as far as 𝑞𝑒̅̅ ̅ ∈ (0,1), which occurs if 

and only if  
𝐶

μ
< 𝑅 <

𝐶

μ−λ
. 

Finally, the `always join' (𝑞𝑒 = 1) is equilibrium strategy, if and only if 1 ∈ 𝐵𝑅(1), 

i.e., 1 ≤ 𝑞𝑒̅̅ ̅, which reduces to 𝑅 ≥
𝐶

μ−λ
. 

In conclusion, for the unobservable model, a unique equilibrium strategy 𝑞𝑒  exists, 

given by the formula 

𝑞𝑒 =

{
 
 

 
 0, if 𝑅 ≤

𝐶

𝜇
,

1

𝜆
(𝜇−

𝐶

𝑅
), if  

 𝐶

𝜇
≤ 𝑅 ≤

𝐶

𝜇−𝜆
,

1, 𝑅 ≥
𝐶

𝜇−𝜆
.

 

 In what follows, we will present various models where the information that is provided 

to the customers concerns the decisions of previous customers. For each model, we will 

describe the stochastic processes for steps 1 and 2 of the 4-step process. This constitutes 

the queueing part of the problems, the part that is treated in the present paper. Steps 3 

and 4 which constitute the game-theoretical part of the study will be presented in future 

work. However, some preliminary results are shown in Section 6 (a summary of the results 

in Economou (2024)). 

5.1 The detailed N-Bernoulli information scheme 

Under the detailed 𝑁-Bernoulli information scheme, the arriving customers are 

informed about the join-or-balk decisions of the last 𝑁 previous arrivals. For example, for 

𝑁 = 3, the information i = (0,0,1) means that the last two arrivals balked, whereas the 

arrival just before them entered. 

A customer's strategy in this case is a vector 𝑞 = (𝑞𝑖1,𝑖2,…,𝑖𝑁: (𝑖1, 𝑖2, … , 𝑖𝑁) ∈ {0,1}
𝑁), 

where 𝑞𝑖1,𝑖2,…,𝑖𝑁 is the join probability for a customer who receives the information 𝐼(𝑡) =

(𝑖1, 𝑖2,… , 𝑖𝑁) regarding the decisions of the last 𝑁arrivals. 

Under a given strategy 𝑞 of the population, the process {(𝑁(𝑡), 𝐼(𝑡))}, where 𝑁(𝑡) is 

the number of customers in the system at time 𝑡 and 𝐼(𝑡) the information value at time 𝑡 is 

a QBD process with transition rate matrix  
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𝑄 =

(

 
 

𝐵0,0 𝐵0,1 0 0 0 ⋯

𝐵1,0 𝐴1 𝐴0 0 0 ⋯

0 𝐴2 𝐴1 𝐴0 0 ⋯
0 0 𝐴2 𝐴1 𝐴0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱)

 
 

.                                 (5.2) 

 

Each block is of size 2𝑁 × 2𝑁 , where 𝑁 is the number of previous customers for whom the 

join-or-balk information is provided. 

For example, for the simplest case, where 𝑁 = 1, we have that {(𝑁(𝑡), 𝐼(𝑡))} is a QBD 

process, where {𝑁(𝑡)} corresponds to the level and {𝐼(𝑡)} corresponds to the phase of the 

process. Its transition diagram under a general strategy 𝑞 = (𝑞0, 𝑞1) is presented in Figure 1. 

Figure 1: Transition diagram of {(𝑁(𝑡), 𝐼(𝑡))} for the detailed 1-Bernoulli information 

scheme under a given population strategy (𝑞0, 𝑞1). 

The QBD blocks that appear in matrix (4.2) for 𝑁 = 1 are as follows: 

𝐴0 = (
0 𝜆𝑞0
0 𝜆𝑞1

) , 𝐴1 = (
−(𝜆𝑞0 + 𝜇) 0

𝜆(1 − 𝑞1) −(𝜆 + 𝜇)
), 

𝐴2 = 𝜇𝐼, 𝐵0,0 = 𝐴0 + 𝐴1, 𝐵0,1 = 𝐴0, 𝐵1,0 = 𝐴2. 

For 𝑁 = 2 the phase-space has now 4 elements and a general strategy is given as 𝑞 =

(𝑞00, 𝑞01 , 𝑞10, 𝑞11). Under this strategy, the QBD blocks that appear in matrix (5.2) assume 

the form 

  𝐴0 = (

0 0 𝜆𝑞00 0
0 0 𝜆𝑞01 0
0 0 0 𝜆𝑞10
0 0 0 𝜆𝑞11

), 

𝐴1 =

(

 

−(𝜆𝑞00 + 𝜇) 0 0 0

𝜆(1 − 𝑞01) −(𝜆 + 𝜇) 0 0

0 𝜆(1 − 𝑞10) −(𝜆 + 𝜇) 0

0 𝜆(1 − 𝑞11) 0 −(𝜆 + 𝜇))

 , 

𝐴2 = 𝜇𝐼, 𝐵0,0 = 𝐴0 + 𝐴1, 𝐵0,1 = 𝐴0, 𝐵1,0 = 𝐴2. 
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5.2 The geometric run-of-1s information scheme 

Under the geometric run-of-1s information scheme, the arriving customers are 

informed about the number of customers joining since the last balking customer. For 

example, the information 𝑖 = 5 means that the last 5 arrivals entered whereas the arrival 

just before them did not enter. 

A customer's strategy is a sequence 𝑞 = (𝑞0, 𝑞1, 𝑞2, … ), where 𝑞𝑖  is the join probability 

for a customer who receives the information 𝐼(𝑡) = 𝑖. 

Under a given strategy of this form, the process {(𝑁(𝑡), 𝐼(𝑡))} which records the 

current number of customers and the corresponding information value is again a QBD 

process with transition rate matrix given by (5.2), where the QBD blocks are of infinite size, 

since 𝐼(𝑡) takes values in ℐ = {0,1,2, … }. The QBD blocks under an arbitrary strategy 𝑞 =

(𝑞0, 𝑞1, 𝑞2, … ) are the following: 

𝐴0 =

(

 
 

0 𝜆𝑞0 0 0 0 ⋯
0 0 𝜆𝑞1 0 0 ⋯
0 0 0 𝜆𝑞2 0 ⋯
0 0 0 0 𝜆𝑞3 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱)

 
 
, 

𝐴1 =

(

 
 

−(𝜆𝑞0 + 𝜇) 0 0 0 0 ⋯

𝜆(1 − 𝑞1) −(𝜆 + 𝜇) 0 0 0 ⋯

𝜆(1 − 𝑞2) 0 −(𝜆 + 𝜇) 0 0 ⋯

𝜆(1 − 𝑞3) 0 0 −(𝜆 + 𝜇) 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱)

 
 
, 

𝐴2 = 𝜇𝐼, 𝐵0,0 = 𝐴0 + 𝐴1, 𝐵0,1 = 𝐴0, 𝐵1,0 = 𝐴2. 

The transition diagram is presented in Figure 2. To make the transitions clearer we have 

shown the curved arrows that correspond to transitions of the form (𝑛, 𝑖) → (𝑛, 0), with 

corresponding rates λ(1 − 𝑞𝑖) only for 𝑛 = 0 in the diagram. For 𝑛 ≥ 1 the same transitions 

are possible, but we have omitted the curved arrows from the diagram. 
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Figure 2: Transition diagram of {(𝑵(𝒕), 𝑰(𝒕))} for the geometric run-of-1s information 

scheme under a given population strategy 𝒒 = (𝒒𝟎, 𝒒𝟏, … ). 

 

5.3 The geometric run-of-0s information scheme 

 This is the dual of the geometric run-of-1s information scheme where the customers 

are informed about the number of balking customers since the last joining customer. A 

customer's strategy is again a sequence 𝑞 = (𝑞0, 𝑞1, 𝑞2, … ), where 𝑞𝑖  is the join probability 

for a customer that receives information 𝐼(𝑡) = 𝑖. Under a given arbitrary strategy, the 

joint process of the number of present customers and the corresponding information value 

is a QBD with a similar structure as in the geometric run-of-1s case. 

5.4 Truncated geometric information scheme 

 In the truncated-at-𝑁 geometric run-of-1s information scheme the customers are 

informed about the number of joining customers since the last balking customer being 0 or 

1 or 2 or …𝑁 or `above 𝑁'. This model is a truncated version of the geometric run-of-1s 

information scheme. Although it seems a bit artificial, it has the advantage that it 

corresponds to a QBD process with finite phase-space as opposed to the original geometric 

run-of-1s scheme where the phase-space is infinite.  

 Similarly, the truncated-at-N geometric run-of-0s information scheme is a truncated 

version of the original geometric run-of-0s information scheme, with a corresponding QBD 

process that has finite phase-space. 

5.5 The binomial information scheme 

Under the binomial information scheme, the customers are informed about the 

number of joining customers among the last 𝑁 more recent arrivals. For example, for 𝑁 =
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7, the information 𝑖 = 3 means that, among the last 7 more recent arrivals, 3 of them 

entered. A customer's strategy is a vector 𝑞 = (𝑞0, 𝑞1, 𝑞2, … , 𝑞𝑁), where 𝑞𝑖  is the join 

probability for a customer who receives information 𝑖.Under a given strategy of this form, 

the process {(𝑁(𝑡), 𝐼(𝑡))} which records the current number of customers, and the 

corresponding information is not Markovian. Therefore, to study this information case, we 

use the QBD process that we defined for the detailed 𝑁-Bernoulli information scheme and 

proceed with conditioning arguments for the various computations. 

6. Equilibrium customer strategies for the detailed 1-Bernoulli 

information scheme 

We now consider the case where each customer is informed about the decision of the last 

arrival before her, being join (1) or balk (0), and then makes her own decision. This 

corresponds to the detailed 1-Bernoulli information scheme. We will refer to this model as 

the last-customer's-decision (lcd) model when we compare it with other models that have 

been reported in the literature as the unobservable (un) and the observable (obs) models.  

Consider, now, a tagged arriving customer and let 𝑆 be her sojourn time in the system. 

Moreover, let 𝑁−and 𝐼− be the number of customers in the system and the decision of the 

last arrival before her. Due to the Poisson arrivals (PASTA property) we have that the joint 

distribution of (𝑁−, 𝐼−) coincides with the steady-state distribution of {(𝑁(𝑡), 𝐼(𝑡))} in 

continuous time. Therefore, the conditional probability that the tagged customer will see 𝑛 

customers in the system, given that the last arrival before her made the decision 𝑖 is  

Pr[𝑄− = 𝑛|𝐼− = 𝑖] =
𝑝(𝑛,𝑖)

𝑝𝐼(𝑖)
,    𝑛 ≥ 0,    𝑖 = 0,1,                              (6.1) 

where (𝑝(𝑛, 𝑖): 𝑛 ≥ 0, 𝑖 = 0,1) is the steady-state distribution of {(𝑁(𝑡), 𝐼(𝑡))} and 

𝑝𝐼(𝑛) = ∑ 𝑝(𝑛, 𝑖)∞
𝑛=0 , 𝑖 = 0,1. Hence, we can easily see that  

𝐸[𝑆|𝐼− = 𝑖] = ∑
𝑛+1

𝜇

∞
𝑛=0 ⋅

𝑝(𝑛,𝑖)

𝑝𝐼(𝑖)
=

𝐸[𝑄|𝐼 = 𝑖]+1
𝜇

=
𝑃𝑖
′(1)/𝑝𝐼(𝑖)+1

𝜇
,                (6.2) 

where 𝑃𝑖(𝑧) = ∑ 𝑝(𝑛, 𝑖)𝑧𝑛∞
𝑛=0 , 𝑖 = 0,1. Using the balance equations for themodel and 

following the generating function approach (see Economou (2024)) yields 

𝑝𝐼(0) =
1−𝑞1

1−𝑞1+𝑞0
 and 𝑝𝐼(1) =

𝑞0

1−𝑞1+𝑞0
,                                       (6.3) 

and 

𝑃0(𝑧) =
1−𝑞1

1−𝑞1+𝑞0
⋅
ρ𝑞0+ρ+1−ρ2−ρ𝑞1𝑧

ρ𝑞0+ρ+1−ρ2−ρ𝑞1
⋅
1−ρ2

1−ρ2𝑧
,                                 (6.4) 

𝑃1(𝑧) =
𝑞0

1−𝑞1+𝑞0
⋅
1+(ρ−ρ2)𝑧

1+ρ−ρ2
⋅
1−ρ2

1−ρ2𝑧
,                                                  (6.5) 
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where ρ2 = ρ2(𝑞0, 𝑞1) is given by 

ρ2 = ρ2(𝑞0, 𝑞1) =
ρ𝑞0+ρ+1−√(ρ𝑞0+ρ+1)

2−4(ρ2𝑞0+ρ𝑞1)

2
.                          (6.6) 

Let 𝑆𝑖(𝑞0, 𝑞1) be the net benefit of a tagged arriving customer who sees 𝐼− = 𝑖 upon 

arrival and decides to join, given that the population of customers follows a strategy 

(𝑞0, 𝑞1). Then, we have that  

𝑆𝑖(𝑞0, 𝑞1) = 𝑅 −
𝐶

μ
𝐸[𝑆|𝐼− = 𝑖].                                           (6.7) 

Using (6.7), (6.2) and evaluating, at 𝑧 = 1, the derivatives of 𝑃0(𝑧), 𝑃1(𝑧), given by (6.4) 

and (6.5), we derive the following explicit formulas for the quantities 𝑆𝑖(𝑞0, 𝑞1), 𝑖 = 0,1: 

𝑆0(𝑞0, 𝑞1) = 𝑅 −
𝐶

μ
(

1

1−ρ2
−

ρρ2𝑞1

ρ2𝑞0+ρ(1−ρ2)𝑞1
),                              (6.8) 

𝑆1(𝑞0, 𝑞1) = 𝑅 −
𝐶

μ
(

1

1−ρ2
+
ρ(ρ−ρ2)𝑞0+ρ𝑞1−ρ2

ρ(ρ−ρ2)𝑞0+ρ𝑞1
).                        (6.9) 

Using the formulas (6.3) we can easily derive the throughput of the system under a 

given customer strategy (𝑞0, 𝑞1). In conjunction with (6.8) and (6.9), we can also obtain the 

social welfare per time unit generated by the system.  

The throughput generated from a customer strategy (𝑞0, 𝑞1) is given by 

𝑇𝐻𝑙𝑐𝑑(𝑞0, 𝑞1) = 𝑝𝐼(0)λ𝑞0 + 𝑝𝐼(1)λ𝑞1 =
λ𝑞0

1−𝑞1+𝑞0
                           (5.10) 

and the corresponding welfare is 

𝑆𝑊𝑙𝑐𝑑(𝑞0, 𝑞1) = 𝑝𝐼(0)λ𝑞0𝑆0(𝑞0, 𝑞1) + 𝑝𝐼(1)λ𝑞1𝑆1(𝑞0, 𝑞1) 

=
λ𝑞0(1−𝑞1)𝑆0(𝑞0,𝑞1)+λ𝑞0𝑞1𝑆1(𝑞0,𝑞1)

1−𝑞1+𝑞0
.                                  (5.11) 

Formulas (6.8) and (6.9) show that  

𝑆0(𝑞0, 𝑞1) > 𝑆1(𝑞0, 𝑞1).                                                   (5.12) 

This inequality implies that the only possible forms for an equilibrium strategy are 

(0,0), (𝑞0
∗ , 0), (1,0), (1, 𝑞1

∗) and (1,1), with 𝑞0
∗ , 𝑞1

∗ ∈ (0,1). Indeed, a strategy (𝑞0
∗ , 𝑞1

∗) is 

equilibrium if only if (𝑞0
∗ , 𝑞1

∗) ∈ 𝐵𝑅(𝑞0
∗ , 𝑞1

∗), so we have the following cases: 

1. (0,0) is equilibrium strategy if and only if 𝑆0(0,0) ≤ 0. 

2. (𝑞0
∗ , 0) with 𝑞0

∗ ∈ (0,1) is equilibrium strategy if and only if 𝑆0(𝑞0
∗ , 0) = 0. 

3. (1,0)is equilibrium strategy if and only if 𝑆1(1,0) ≤ 0 ≤ 𝑆0(1,0). 

4. (1, 𝑞1
∗) with 𝑞1

∗ ∈ (0,1) is equilibrium strategy if and only if 𝑆1(1, 𝑞1
∗) = 0. 

5. (1,1) is equilibrium strategy if and only if 𝑆1(1,1) ≥ 0. 

Therefore, the key for the computation of the equilibrium strategies for a specific instance of 

the model (for given parameters λ, μ, 𝑅 and 𝐶) is the calculation of the quantities 

𝑆0(0,0), 𝑆0(1,0), 𝑆1(1,0), 𝑆1(1,1) and the solution of the equations 𝑆0(𝑥, 0) = 0 and 

𝑆1(1, 𝑥) = 0 in (0,1). To this end we can use the formulas (6.8) and (6.9). Considering the 
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above 5 cases regarding the form of equilibrium strategies and solving with respect to the 

normalized service value ν =
𝑅μ

𝐶
, we characterize the equilibrium strategy, as the normalized 

service value ν assumes values from 0 to ∞. 

 

Theorem 6.1 An equilibrium customer strategy for the lcd model exists and is unique for any 

values of the underlying parameters. If ρ < 1, then we have the following cases regarding 

the equilibrium strategy (𝑞0
𝑙𝑐𝑑−𝑒 , 𝑞1

𝑙𝑐𝑑−𝑒): 

1. ν ∈ [0,1]. Then (𝑞0
𝑙𝑐𝑑−𝑒 , 𝑞1

𝑙𝑐𝑑−𝑒) = (0,0). 

2. ν ∈ (1,
2

1−2ρ+√1+4ρ
). Then (𝑞0

𝑙𝑐𝑑−𝑒 , 𝑞1
𝑙𝑐𝑑−𝑒) = (𝑞0

∗, 0) with 

𝑞0
∗ =

1
1

ν
+ρ−1

−
1

νρ
.                                                      (6.13) 

3. ν ∈ [
2

1−2ρ+√1+4ρ
,
5ρ+1−(ρ+1)√1+4ρ

3ρ−ρ√1+4ρ
]. Then (𝑞0

𝑙𝑐𝑑−𝑒 , 𝑞1
𝑙𝑐𝑑−𝑒) = (1,0). 

4. ν ∈ (
5ρ+1−(ρ+1)√1+4ρ

3ρ−ρ√1+4ρ
,
1

1−ρ
). Then (𝑞0

𝑙𝑐𝑑−𝑒 , 𝑞1
𝑙𝑐𝑑−𝑒) = (1, 𝑞1

∗) with 

𝑞1
∗ =

3−ρ−
2

ν−1
+(1−ρ)√1+

4

ρ(ν−1)

2
.                                         (6.14) 

5. ν ∈ [
1

1−ρ
, ∞). Then(𝑞0

𝑙𝑐𝑑−𝑒 , 𝑞1
𝑙𝑐𝑑−𝑒) = (1,1). 

Now, we can use the formulas (6.10) and (6.11) to obtain the equilibrium throughput and 

the equilibrium social welfare as ν increases from 0 to ∞ (for details see Economou (2024)). 

 
 

7. Comparison with other information structures 

In this section we present some numerical results concerning the comparison of the lcd 

model with the un (Edelson and Hildebrand (1975)) and obs (Naor (1969)) models. Let 𝑞𝑢𝑛−𝑒 

be the equilibrium probability of the un model (see e.g., Hassin and Haviv (2003) Table 3.1) 

and 𝑇𝐻𝑢𝑛−𝑒, 𝑆𝑊𝑢𝑛−𝑒 be the corresponding equilibrium throughput, equilibrium social 

welfare. Moreover, we denote by 𝑇𝐻𝑜𝑏𝑠−𝑒 and 𝑆𝑊𝑜𝑏𝑠−𝑒 the throughput and the social 

welfare of the obs model when customers enter according to Naor's individually optimal 

threshold. 

To present several numerical results concerning the comparison of the various models, 

we will consider a numerical experiment with parameters λ = 0.5, μ = 1, 𝐶 = 1 and 𝑅 ∈

[0,3.5], which we will refer to as the `standard numerical scenario'. Note that in this scenario 

we have that ρ = 0.5, and ν ∈ [0,3.5]. This numerical scenario is typical. Indeed, we have 
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considered a large number of other parameter values, and the various figures have similar 

shapes leading to the same findings and interpretations. 

In Figure 3 we present the graphs of the equilibrium join probabilities as functions of the 

service value for the lcd and the un models.  

 

Figure 3: Equilibrium join probabilities for 𝛌 = 𝟎. 𝟓, 𝛍 = 𝟏, 𝑪 = 𝟏, 𝑹 ∈ [𝟎, 𝟑. 𝟓]. 

 

In Figure 4, we show the graphs of the equilibrium social welfare functions, as the 

service value varies, for the standard numerical scenario, for the un, lcd and obs models. 

 

Figure 4: Equilibrium social welfare functions for 𝛌 = 𝟎.𝟓, 𝛍 = 𝟏, 𝑪 = 𝟏, 𝑹 ∈ [𝟎, 𝟑. 𝟓]. 

 

 

In Figure 5, we see the graphs of the equilibrium throughput functions for the standard 

numerical scenario. 
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Figure 5: Equilibrium throughput functions for 𝛌 = 𝟎. 𝟓, 𝛍 = 𝟏, 𝑪 = 𝟏, 𝑹 ∈ [𝟎, 𝟑. 𝟓] 

 

The main findings from these graphs about the equilibrium probabilities (EP), the social 

welfare functions (SW) and the throughput functions (TH), that have consistently observed 

in all numerical scenarios that we have studied, are listed below:  

 EP1 𝑞0
𝑙𝑐𝑑−𝑒 ≥ 𝑞𝑢𝑛−𝑒 ≥ 𝑞1

𝑙𝑐𝑑−𝑒. This universal inequality shows that the join 

probability of the un model is always between the two join probabilities for the lcd 

model. 

 SW1 𝑆𝑊𝑜𝑏𝑠−𝑒 ≥ 𝑆𝑊𝑙𝑐𝑑−𝑒 ≥ 𝑆𝑊𝑢𝑛−𝑒. This universal inequality shows that the 

observable model outperforms the lcd model which in turn outperforms the un 

model in terms of social welfare. 

 SW2 The difference 𝑆𝑊𝑙𝑐𝑑−𝑒(ν) − 𝑆𝑊𝑢𝑛−𝑒(ν) is a unimodal function of ν which 

attains its maximum at 
5ρ+1−(ρ+1)√1+4ρ

3ρ−ρ√1+4ρ
. This value constitutes the boundary 

between Cases 3 and 4 of Theorem 6.1, that is, it is the value where the equilibrium 

strategy changes from (1,0) to (1, 𝑞1
∗) with 𝑞1

∗ ∈ (0,1). 

 TH1 𝑇𝐻𝑜𝑏𝑠−𝑒(ν) > 𝑇𝐻𝑙𝑐𝑑−𝑒(ν) > 𝑇𝐻𝑢𝑛−𝑒(ν), for low values of ν (but greater than 

1). 

 TH2 𝑇𝐻𝑜𝑏𝑠−𝑒(ν) < 𝑇𝐻𝑙𝑐𝑑−𝑒(ν) < 𝑇𝐻𝑢𝑛−𝑒(ν), for high values of ν (but smaller than 

1

1−ρ
). 

 TH3 𝑇𝐻𝑜𝑏𝑠−𝑒(ν) < 𝑇𝐻𝑙𝑐𝑑−𝑒(ν) = 𝑇𝐻𝑢𝑛−𝑒(ν), for ν ≥
1

1−ρ
. 

 TH4 The functions 𝑇𝐻𝑙𝑐𝑑−𝑒(ν) and 𝑇𝐻𝑢𝑛−𝑒(ν) cross only once in (1,
1

1−ρ
). More 

concretely, there exists ν∗ such that 𝑇𝐻𝑙𝑐𝑑−𝑒(ν) > 𝑇𝐻𝑢𝑛−𝑒(ν), for ν ∈ (1, ν∗), 

whereas 𝑇𝐻𝑙𝑐𝑑−𝑒(ν) < 𝑇𝐻𝑢𝑛−𝑒(ν), for ν ∈ (ν∗,
1

1−ρ
).  
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8. Results 

In this paper, we introduce several models for the communication of recent customers' 

decisions to the strategic customers of a service system. Moreover, we present some 

preliminary results for the customer strategic behavior in these models and compare it with 

the corresponding behavior in the classical observable and unobservable models.  

 For the join-or-balk dilemma of strategic customers at an M/M/1 queue, it turns out that 

this new type of information smooths the effective arrival process and is beneficial for the 

social welfare in comparison to the unobservable model, in particular for intermediate 

values of the service reward. 

9. Conclusions 

In systems where the information about the queue length cannot be communicated to the 

customers, the provision of information about the last customer's decision has been shown 

to be advantageous. This was outlined in this paper and presented in more detail in 

Economou (2024). 

The present paper suggests a variety of models that are based on the same idea, i.e. 

informing customers regarding other customers’ decisions. The research effort should be 

continued to clarify in more depth the implications of such types of information. In 

particular, the following research questions seem important for extending the results: 

 What is the effect of informing customers about recent customers’ decisions on the 

customers’ utility, administrator’s profit and social welfare? Who benefits and who 

loses from such type of information? 

 Can the analysis be extended into more complex queueing models, for example 

models with many servers and/or batch arrivals and departures? 

 How can the analysis be carried out in the case of heterogeneous customers 

(regarding their service value and waiting costs)? 
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