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Communicating recent customers’
decisions to strategic customers of
a service system: the join or balk
dilemma

Antonis Economou”

Abstract

In the present paper, we consider the fundamental model of Rational Queueing which concerns
the join-or-balk dilemma of homogeneous strategic customers at the single-server Markovian
queue with infinite waiting space. This model has been extensively studied under various
assumptions regarding the information that is available to the customers upon arrival. The
information assumptions that have appeared in the literature deal mainly with the possibility of
the customers to observe the queue length before making their decisions (observable model,
unobservable model, partially observable model, observable with delay model etc.). In the present
paper, we introduce a new class of models where the information that is communicated to the
arriving customers concerns the recent customers' decisions. We present various models that
belong to this class and report some preliminary promising results that show that this kind of
information is valuable and can lead to good outcomes.

JEL Classifications: C690, C720.
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1. Introduction

Rational Queueing is the branch of Queueing Theory that focuses on the game-theoretical
analysis of service systems. The basic assumption of Rational Queueing is that the various
agents (customers and/or administrators-servers) of a service system are strategic, i.e. they
make decisions with the objective of maximizing their own utility function that represents
their desire for service and their dislike for waiting. These ideas started about 50 years ago
with the pioneering papers of Naor (1969), and Edelson and Hildebrand (1975) who studied
the join-or-balk dilemma of arriving customers at the single-server Markovian queue with
infinite waiting space. Naor (1969) focused on the observable model, where the arriving
customers have the possibility to observe precisely the queue length before making their
decisions, whereas Edelson and Hildebrand (1975) considered the unobservable
counterpart, where the decisions are based solely on the economic and operational
parameters of the system.

The research in Rational Queueing has been expanded considerably ever since. The
monograph by Hassin and Haviv (2003) summarizes the main methodological tools in the
area and fundamental models. Stidham (2009) and Hassin (2016) monographs are also
devoted to the presentation of methods and results for this branch of Queueing Theory.

A fundamental issue in Rational Queueing is the impact of the information that is
provided to the customers. The importance of this issue has been recognized by various
studies and the interested reader may consult the recent reviews by Hassin (2016) (chapter
3), Ibrahim (2018), Economou (2021) and Economou (2022). More details are given in the
literature review in section 2.

Most papers regarding the influence of the information on strategic customer behavior
in service systems consider the number of present customers as the key information that is
provided to the customers. However, this kind of information may not be available in
practice. One such case occurs when there are independent web-based systems that
receive the arriving customers that do not have information about what is going on in the
core service system. This happens frequently when petitions for service are deposited
through a web-platform and the service consists of several stages that are not monitored
by the platform. In such a case the platform can provide information about previous
arrivals and their join decisions but not about the actual congestion.

The present paper aims to introduce a family of models that deal with the information

that the customers may receive about previous customers' decisions. The models are built



for the situation of the join-or-balk dilemma of strategic customers in the M/M/1 queue
(unobservable M/M/1 model of Edelson and Hildebrand (1975)).

The paper is structured as follows: In Section 2 we present a brief literature review
regarding the problem of information provision to strategic customers of a queueing
system. In Section 3, we present the main hypotheses concerning the study and, in Section
4, we describe the framework for the study of strategic customer behavior in a service
system and then adapt the framework for the study of the join-or-balk dilemma for the
arriving customers at a queue. In Section 5, we describe in detail several types of models
regarding the information that can be provided to the customers about the decisions of
previous customers and discuss their performance evaluation under arbitrary strategies. In
Section 6, we present some preliminary analytical results on a simple information case. In
Section 7, we show several numerical results that illustrate how this simple information
case compares with the classical unobservable and observable models. The study finishes
with a list of the results in Section 8 and with conclusions and directions for future research

that are presented in Section 9.

2. Literature review

The literature that focuses on the effect of information on strategic customer behavior in
service systems is very extensive. Two key references are the pioneering papers of Hassin
(1986) and Chen and Frank (2004) who compared the equilibrium performance of the
observable and unobservable versions of the single-server Markovian queue with strategic
customers who face the join-or-balk dilemma. These papers showed that it is advantageous
in some cases to reveal the queue length and in other cases to conceal it.

Various authors considered models that lie between the two extreme information
versions (observable and unobservable) of the above situation. More specifically, the
following categories of models have appeared in the literature (see Economou (2021) and
Economou (2022)):

e Systems with imperfect observation structure. In such systems, the customers
receive imperfect information about the queue length (see e.g., Economou and
Kanta (2008), Guo and Zipkin (2009), and Hassin and Koshman (2017)).

e Systems with delayed observation structure. In such systems, the customers
observe the queue length with some delay (see e.g., Burnetas, Economou and

Vasiliadis (2017), and Hassin and Roet-Green (2020)).



e Systems with mixed observation structure. In such models, only a fraction of the
customers observe the queue length (see e.g., Economou and Grigoriou (2015),
and Hu, Li and Wang (2018)).

e Systems with alternating observation structure. Under such an information
structure, a system alternates between observable and unobservable periods
(see e.g., Dimitrakopoulos, Economou and Leonardos (2021)).

e Systems with non-standard or augmented observation structure. In such
systems, the customers observe system features other than or in addition to
gueue length, like the state of the server or of a random environment etc. (see
e.g., Burnetas and Economou (2007), Economou and Manou (2013), and
Logothetis and Economou (2023)).

Some other important studies that deal with the influence of information on strategic
customer behavior in service systems have been reported in Allon et al. (2011), Armony
and Maglaras (2004), Cui and Veeraraghavan (2016), Debo and Veeraraghavan (2016), Guo
and Zipkin (2007), Hassin and Roet-Green (2017), Hassin and Snitkovsky (2017), Haviv and
Kerner (2007), Hassin and Oz (2016), Hassin and 0z(2018), lbrahim et al. (2017), Inoue et
al. (2023), Kerner (2011), Veeraraghavan and Debo (2009), Veeraraghavan and Debo
(2011), Wang et al. (2018), Wang and Hu (2019), and Yu et al. (2018). In these works, the
authors examine various important aspects of information influence on customers'
behavior in service systems. For detailed summaries and comments, see Hassin (2016),

Economou (2021), Economou (2022) and Ibrahim (2018).
3. Hypotheses

Throughout the present study we adopt the usual hypotheses that concern the economic

(game-theoretic) analysis of queueing systems. More specifically:

e The queueing systems under study have reached a steady state, in the sense that
their various parameters do not change over time. Moreover, the systems have run

for a long time so that any effects of the initial conditions have been vanished.

e The customers are assumed to be fully rational, in the sense that they can assess
the effects of their actions, taking into account other customers’ actions, accurately

and effectively.

e The customers are selfish and want to maximize their own utility without bothering



about the effect of their actions on other customers or on the administrator of the

system.

4. The framework

In the study of strategic customer behavior in queueing systems, the fundamental concepts
of classical Game Theory are not directly applicable since there are two significant
problems: The first is the fact that the number of customers is infinite, since the potential
customers of a service system are infinite. The second is that the customers-players do not
make simultaneously their decisions since they arrive sequentially during an infinite time
horizon extending to both directions in time. These problems are bypassed by defining
analogous concepts and exploiting the homogeneity of the various classes of customers.
However, in the present study, to keep the framework as simple as possible, we will
assume that all customers are homogeneous.

In the case of homogeneous strategic customers, a Queueing Game among them is
specified by the set of their common strategies, S, and from the utility function U(q, q'|i)
that specifies the payoff of a customer that uses strategy g then all other customers follow
strategy q' and the information i € I is provided (where I denotes the set of all possible
information states-values).

Consider, now, a tagged customer. Given that a strategy q' is used by the population of
(the other) customers, a strategy q*of the tagged customer is said to be a best response
against q’, if g*maximizes f(q) = U(q, q'|i), for all possible values of the informationi. The
set of best responses against q' is denoted by BR(q'). A strategy q° is said to be a
(symmetric) equilibrium, if it is best response against itself, i.e., if ¢ € BR(q®).

A basic step for the study of strategic customer behavior concerns the computation of
the payoff function U(q, q'|i). The fundamental assumption for this computation is that if
we consider a tagged customer who follows a strategy g, when all others follow a
strategy q', then the tagged customer's strategy does not influence the steady-state
behavior of the system. Indeed, the general behavior of the system and the corresponding
performance measures are determined by the strategy q’ that the other customers follow,
since the impact of the tagged customer is negligible. Moreover, it is assumed that the
system is in a stochastic steady state. To determine the equilibrium customer strategies in
a queueing system, a general methodology is applied, using the following steps:

e Step 1: The steady-state behavior of the system under an arbitrary strategy q’ of

the population of the customers is studied.



e Step 2: The utility function U(gq, q'|i) of a tagged customer that follows strategyq,
when all other customers follow strategy q’, and the information i is given, is
computed.

e Step 3: The best response BR(q') of the tagged customer against an arbitrary
strategy, q', of the population of the customers is computed.

e Step 4: All strategies with the property q¢ € BR(q¢) are identified. These are
exactly the equilibrium strategies.

A related problem from a social planner's point of view is the maximization of the social
welfare per time unit. Then, a socially optimal strategy g, solves the optimization
problem max q:ESSW(q’), where SW(q") stands for the social welfare function, when the
strategy q’ is followed by the population of customers.

In the case of the join-or-balk dilemma, a strategyq, of an arriving customer,
corresponds to a vector of join probabilities for the various values of the information, i.
Therefore, g = (q(i): i € I), where g (i) is the join probability for a customer that receives
information iupon arrival. Then, the utility function has the form

Ulq,q'lD) = (1-q@)-0+q@OR - CEWIq', i]), (4.1)
where

e R isthe service value,

e (is the waiting cost per time unit,

e g =(q(i):i € isthe strategy of a tagged customer,

e q' =(q'(i):i €1 is the strategy of the population of the (other) customers,

e E[W]|q’,i]is the expected total sojourn time of the tagged customer in the system,
if she decides to enter, when the informationi is given and the population follows

strategy q'.

5. The models

We consider a single server queue with infinite waiting space, where strategic customers
arrive according to a Poisson process at rate A and have independent exponential service
times with rate u, independent of the arrival process. The queue discipline is the First-
Come-First-Served (FCFS). We define p = % to be the utilization rate of the model.

Arriving customers at this M/M/1 queue face the dilemma of whether to join or balk
with the objective of maximizing their own utilities. Each customer receives a reward of R

units upon service completion and accumulates waiting costs at rate C as long as she stays



in the system. We define v = % to be the normalized service value, which corresponds to

the ratio of the service value over the mean cost of a service time.

The operational and economic parameters of the system are assumed to be common

knowledge for all customers. This is a reasonable assumption when the population of

customers visits the system recurrently.

In the classical Edelson and Hildebrand (1975) unobservable model, the 4-step

procedure for identifying the equilibrium strategies proceeds as follows:

Step 1: Since the customers receive no information in this case, a customer's
strategy is just her join probability q. Under an arbitrary strategy, q’, the system
behaves as an M/M/1 queue with arrival rate Aq" and service rate u. The state of
the system is represented by a continuous-time Markov chain N(t) which records

the number of customers in the system. Its transition matrix is given as

—Aq' Aq’' 0 0 0o -
/ p =g +p Aq’ 0 0 \
Q=] o u —(Aq" + w) Aq' 0 |
0 0 H —(q" + ) Aq’ /

Step 2: The waiting time of an arriving customer at an M/M/1 queue with arrival

rate Aq’ and service rate u is known to be exponentially distributed with rate pu —

Aq'. Hence, the expected total sojourn time, if she decides to join is ﬁ Therefore,
the utility function, given by (4.1), assumes the form
n — _ . . _ C
U(g.q)=0-q)-0+q-(R-5). (5.1)

Step 3: Since U(q,q') is a linear function ofq, its maximum occurs at g =1

C

i 0 (respectively if R —

(respectively at g = 0 or for every g € [0,1]), if R —

Therefore, the set of best responses, BR(q'), of a tagged customer against an

arbitrary strategy, q’, of the population of the customers is given as

{0}, ifq’ >7q.,
BR(q") =1[0,1], ifq' =7,
{13, ifq' <7q.,

where

is the root of R — — - = 0.
n—Aq

Step 4: We can now proceed to the computation of the equilibrium strategies:



The strategy of "always balk' (g, = 0) is equilibrium strategy, if and only if 0 €
BR(0), i.e., 0 = q,, which reduces to R < E
A strategy q. € (0,1) is equilibrium strategy, if and only if g, € BR(q,), i.e., g, =

Ge, which reduces to g, = %(u - %) This is valid as far as g, € (0,1), which occurs if
c c
donlyif =< R < —.
andonly if =
Finally, the ‘always join' (g, = 1) is equilibrium strategy, if and only if 1 € BR(1),
i.e., 1 <7q., whichreducesto R > ﬁ
In conclusion, for the unobservable model, a unique equilibrium strategy g, exists,

given by the formula

(o0 ifR<
| u
1/ C o C c
Qe:{Z(”_§>’ if  SR=.75
Cc
LL Rz

In what follows, we will present various models where the information that is provided
to the customers concerns the decisions of previous customers. For each model, we will
describe the stochastic processes for steps 1 and 2 of the 4-step process. This constitutes
the queueing part of the problems, the part that is treated in the present paper. Steps 3
and 4 which constitute the game-theoretical part of the study will be presented in future
work. However, some preliminary results are shown in Section 6 (a summary of the results

in Economou (2024)).

5.1 The detailed N-Bernoulli information scheme

Under the detailed N-Bernoulli information scheme, the arriving customers are
informed about the join-or-balk decisions of the last N previous arrivals. For example, for
N = 3, the information i = (0,0,1) means that the last two arrivals balked, whereas the
arrival just before them entered.

A customer's strategy in this case is a vector q = (qi1,iz,---,iN: (iy,ip, ., iy) € {0,1}”),
where q;, ;, i\ is the join probability for a customer who receives the information I1(t) =
(iy, iy, ..., iy) regarding the decisions of the last Narrivals.

Under a given strategy g of the population, the process {(N(t),1(t))}, where N(t) is
the number of customers in the system at time t and I(t) the information value at time t is

a QBD process with transition rate matrix



Boy Boa 0 0 0 -

/31,0 A1 4 0 O \

Q= 0o 4, 4, 4, 0 |
0 0 A, 4 A

(5.2)

Each block is of size 2V x 2V, where N is the number of previous customers for whom the
join-or-balk information is provided.

For example, for the simplest case, where N = 1, we have that {(N(t),l(t))} is a QBD
process, where {N(t)} corresponds to the level and {I(t)} corresponds to the phase of the

process. Its transition diagram under a general strategy ¢ = (qo, q1) is presented in Figure 1.

Aqq Aqy Aqq Aqq Aqq
u u uw s u

U

A1 —qq)
(1—qq

~<
@ @ 30 /4‘-0\‘ -
'u"u<'>uUM

Figure 1: Transition diagram of {(N(t), I(t))} for the detailed 1-Bernoulli information

scheme under a given population strategy (q¢, q1)-

The QBD blocks that appear in matrix (4.2) for N = 1 are as follows:

Ao = <0 Aq:)’Al B (—/1((/11(;323) —(AO+ u))'

Ay = ul,Byg = Ao + Ay, Boy = Ag, B1p = 4.
For N = 2 the phase-space has now 4 elements and a general strategy is given as q =

(900, 901, 910, 911)- Under this strategy, the QBD blocks that appear in matrix (5.2) assume

the form

0 0 Agp O
[0 0 A 0
°=lo 0 0 gy
00 0 gy

—(Aqoo + 1) 0 0 0 \

PR I Tc S B R N 0
! 0 A1—gq) -+ 0 /
0 A1 —qq1) 0 -1+

Ay =ul,Byog = Ay + Ay,By1 = Ag, B1p = Ay



5.2 The geometric run-of-1s information scheme

Under the geometric run-of-1s information scheme, the arriving customers are
informed about the number of customers joining since the last balking customer. For
example, the information i = 5 means that the last 5 arrivals entered whereas the arrival
just before them did not enter.

A customer's strategy is a sequence q = (qq, 41, G2, --- ), Where q; is the join probability
for a customer who receives the information I(t) = i.

Under a given strategy of this form, the process {(N(t),l(t))} which records the
current number of customers and the corresponding information value is again a QBD
process with transition rate matrix given by (5.2), where the QBD blocks are of infinite size,
since I(t) takes values in 7 = {0,1,2,...}. The QBD blocks under an arbitrary strategy q =
(90,91, 93, ---) are the following:

0 4gp 0 0 0

/o 0 A, 0 0 \

A=l0 0 0 Ag, O |

\o 0 0 0 Ags /

—(Aqo + 1) 0 0 0 0o -

A(1-q) -QA+wp 0 0 0 \
A =] 2(1-qy) 0 —(A+ 0 0 |
\A(l—qg) 0 0 -+ 0 /

Ay = ul,Boo = Ao + A1, Bo1 = Ag, B1o = 4s.
The transition diagram is presented in Figure 2. To make the transitions clearer we have
shown the curved arrows that correspond to transitions of the form (n,i) - (n,0), with
corresponding rates A(1 — g;) only for n = 0 in the diagram. For n = 1 the same transitions

are possible, but we have omitted the curved arrows from the diagram.
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Figure 2: Transition diagram of {(N(t), I(t))} for the geometric run-of-1s information

scheme under a given population strategy q = (99,91, ---)-
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5.3 The geometric run-of-0s information scheme

This is the dual of the geometric run-of-1s information scheme where the customers
are informed about the number of balking customers since the last joining customer. A
customer's strategy is again a sequence q = (qo, 41,42, -.- ), Where g; is the join probability
for a customer that receives information I(t) = i. Under a given arbitrary strategy, the
joint process of the number of present customers and the corresponding information value

is a QBD with a similar structure as in the geometric run-of-1s case.

5.4 Truncated geometric information scheme

In the truncated-at-N geometric run-of-1s information scheme the customers are
informed about the number of joining customers since the last balking customer being 0 or
1lor2or ..N or ‘above N'. This model is a truncated version of the geometric run-of-1s
information scheme. Although it seems a bit artificial, it has the advantage that it
corresponds to a QBD process with finite phase-space as opposed to the original geometric
run-of-1s scheme where the phase-space is infinite.

Similarly, the truncated-at-N geometric run-of-Os information scheme is a truncated
version of the original geometric run-of-Os information scheme, with a corresponding QBD

process that has finite phase-space.

5.5 The binomial information scheme

Under the binomial information scheme, the customers are informed about the

number of joining customers among the last N more recent arrivals. For example, for N =

11



7, the information i = 3 means that, among the last 7 more recent arrivals, 3 of them
entered. A customer's strategy is a vector q = (qo, 41,92, ---,qn), Where gq; is the join
probability for a customer who receives information i.Under a given strategy of this form,
the process {(N(t),I(t))} which records the current number of customers, and the
corresponding information is not Markovian. Therefore, to study this information case, we
use the QBD process that we defined for the detailed N-Bernoulli information scheme and

proceed with conditioning arguments for the various computations.

6. Equilibrium customer strategies for the detailed 1-Bernoulli

information scheme

We now consider the case where each customer is informed about the decision of the last
arrival before her, being join (1) or balk (0), and then makes her own decision. This
corresponds to the detailed 1-Bernoulli information scheme. We will refer to this model as
the last-customer's-decision (lcd) model when we compare it with other models that have
been reported in the literature as the unobservable (un) and the observable (obs) models.
Consider, now, a tagged arriving customer and let S be her sojourn time in the system.
Moreover, let N"and I~ be the number of customers in the system and the decision of the
last arrival before her. Due to the Poisson arrivals (PASTA property) we have that the joint
distribution of (N~,I7) coincides with the steady-state distribution of {(N(t),l(t))} in
continuous time. Therefore, the conditional probability that the tagged customer will see n

customers in the system, given that the last arrival before her made the decision i is

PriQ- =nll" =i] =222 n>0, i=01, (6.1)
pr()

where (p(n,i):n=0,i =0,1) is the steady-state distribution of {(N(t),l(t))} and
pi(n) =Y ,p(n,i),i = 0,1. Hence, we can easily see that

- _ A _veo ntl pmd) _ E[Q| =i]+1 _ P/ )/pi()+1
EISIT =i = 2n= oo w - u

) (6.2)

where P;(z) = Yo_o,p(n,i)z", i = 0,1. Using the balance equations for themodel and

following the generating function approach (see Economou (2024)) yields

1-q, do
0) = d 1) = 6.3
Pi(0) 1-q1+qo and p; (1) 1-q1+qo’ (6:3)
and
PO(Z) — 1_1—‘11 . PQO+P+1—_PZ—_P‘11Z . 1_—92 : (6.4)
q1+qo Pqotptl—-p2—pqr 1-pzz
Py(z) = —Jo . 1t@opz 170, (6.5)

1-q1+qo 1+p-pp 1-ppZ’

12



where p, = p2(qo, q1) is given by

+p+1—/(pgo+p+1)2-4(p?qo+pq1)
03 = py(qe,qy) = PI*P J(pao pz P%40+pqs) (6.6)

Let S;(qo,q1) be the net benefit of a tagged arriving customer who sees I~ = i upon
arrival and decides to join, given that the population of customers follows a strategy
(g0, q1)- Then, we have that

c _ .
5i(q0,q1) =R — EE[SU = i]. (6.7)

Using (6.7), (6.2) and evaluating, at z = 1, the derivatives of Py(z), P;(z), given by (6.4)

and (6.5), we derive the following explicit formulas for the quantities S;(qq,q1),i = 0,1:

_p_C( 1 PP241
So(q0,q1) =R m (1—pz pzqo+p(1—pz)q1)' (6.8)

c( 1 p(P—p2)q0tPq1—P2
=R-% : :
$1(q0,1) n (1—pz o pde e ) (6:9)

Using the formulas (6.3) we can easily derive the throughput of the system under a
given customer strategy (qo, q1)- In conjunction with (6.8) and (6.9), we can also obtain the
social welfare per time unit generated by the system.

The throughput generated from a customer strategy (q, q1) is given by

A
TH'? (o, q1) = p1(0Aqo +pr(DAqy = — 12— (5.10)
q1tqo

and the corresponding welfare is

SW4(qo,q1) = pr(0)Aq0S0(qo, q1) + pr(DAg1S1(q0, 1)

— Aq0(1-491)S0(q0,91)+2q09151(90,91) (5.11)
1-q1+4do ' '

Formulas (6.8) and (6.9) show that
S0(q0, q1) > S1(q0, q1)- (5.12)

This inequality implies that the only possible forms for an equilibrium strategy are
(0,0),(gq,0),(1,0),(1,q97) and (1,1), with g5, q;7 € (0,1). Indeed, a strategy (qg,q1) is
equilibrium if only if (g5, 1) € BR(qs, q1), so we have the following cases:

1. (0,0) is equilibrium strategy if and only if $,(0,0) < 0.

2. (g4,0) with g5 € (0,1) is equilibrium strategy if and only if Sy(qg,0) = 0.

3. (1,0)is equilibrium strategy if and only if S;(1,0) < 0 < S5,(1,0).

4. (1,q7) with g; € (0,1) is equilibrium strategy if and only if S; (1, ;) = 0.

5. (1,1) is equilibrium strategy if and only if §;(1,1) > 0.
Therefore, the key for the computation of the equilibrium strategies for a specific instance of
the model (for given parameters A, y, R and C) is the calculation of the quantities
50(0,0),5,(1,0), $,(1,0), S;(1,1) and the solution of the equations Sy,(x,0) =0 and
S$,(1,x) = 0in (0,1). To this end we can use the formulas (6.8) and (6.9). Considering the

13



above 5 cases regarding the form of equilibrium strategies and solving with respect to the

. . R . ey .
normalized service value v = ?“, we characterize the equilibrium strategy, as the normalized

service value v assumes values from 0 to co.

Theorem 6.1 An equilibrium customer strategy for the Icd model exists and is unique for any

values of the underlying parameters. If p < 1, then we have the following cases regarding

the equilibrium strategy (g°4~¢, gi°¢~¢):

1. v € [0,1]. Then (g&®~¢,qic@=¢) = (0,0).
2. VE (1ﬁ) Then (i€9-¢, q1<4¢) = (g5, 0) with

qo = 3+:_1 —%- (6.13)
3 ve [1_2p+zm,5p+31p—_(zz)+_\£rr—4] Then (gie4-¢, qicd=¢) = (1,0).

4 ve <5p+1 (p+1),/1+4p fli ) Then (qlcd e gled- e) = (1,¢}) with

3p—p./1+4p
3— p——+(1 p) /1+
* (v— 1)
qi = —— (6.14)

ve [_ oo) Then(qlcd elqicd e) = (1,1).

Now, we can use the formulas (6.10) and (6.11) to obtain the equilibrium throughput and

the equilibrium social welfare as v increases from 0 to oo (for details see Economou (2024)).

7. Comparison with other information structures

In this section we present some numerical results concerning the comparison of the lcd
model with the un (Edelson and Hildebrand (1975)) and obs (Naor (1969)) models. Let g%~ ¢
be the equilibrium probability of the un model (see e.g., Hassin and Haviv (2003) Table 3.1)
and TH""~¢, SW¥""¢ be the corresponding equilibrium throughput, equilibrium social
welfare. Moreover, we denote by TH°?$=¢ and SW PS¢ the throughput and the social
welfare of the obs model when customers enter according to Naor's individually optimal
threshold.

To present several numerical results concerning the comparison of the various models,
we will consider a numerical experiment with parameters A =0.5, u=1, C=1and R €
[0,3.5], which we will refer to as the ‘standard numerical scenario'. Note that in this scenario

we have that p = 0.5, and v € [0,3.5]. This numerical scenario is typical. Indeed, we have
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considered a large number of other parameter values, and the various figures have similar

shapes leading to the same findings and interpretations.
In Figure 3 we present the graphs of the equilibrium join probabilities as functions of the

service value for the lcd and the un models.

Figure 3: Equilibrium join probabilities for A= 0.5,pn =1,C =1, R € [0, 3.5].
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In Figure 4, we show the graphs of the equilibrium social welfare functions, as the

service value varies, for the standard numerical scenario, for the un, lcd and obs models.

Figure 4: Equilibrium social welfare functionsfor A =0.5,u=1,C =1,R € [0,3.5].
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In Figure 5, we see the graphs of the equilibrium throughput functions for the standard

numerical scenario.



Figure 5: Equilibrium throughput functions forA = 0.5, u=1,C =1, R € [0,3.5]
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The main findings from these graphs about the equilibrium probabilities (EP), the social

welfare functions (SW) and the throughput functions (TH), that have consistently observed

in all numerical scenarios that we have studied, are listed below:

EP1 qic%7¢ > q¥"=¢ > qi¢4~¢. This universal inequality shows that the join
probability of the un model is always between the two join probabilities for the Icd
model.

SW1 SWobs—e > syicd—¢e > SWun=¢  This universal inequality shows that the
observable model outperforms the lcd model which in turn outperforms the un
model in terms of social welfare.

SW2 The difference SW4=¢(v) — SW¥"*~¢(v) is a unimodal function of v which

5p+1—(p+1),/1+4p
3p—p,/1+4p

between Cases 3 and 4 of Theorem 6.1, that is, it is the value where the equilibrium

attains its maximum at . This value constitutes the boundary

strategy changes from (1,0) to (1, q7) with g7 € (0,1).

TH1 THO?S=¢(v) > TH'*?=¢(v) > TH*"~¢(v), for low values of v (but greater than
1).

TH2 TH°PS~¢(v) < TH'?~¢(v) < TH¥"~¢(v), for high values of v (but smaller than

L)_

1-p
TH3THOPS~¢(v) < TH'**=¢(v) = TH*"~(v), for v > .

TH4 The functions TH*4=¢(v) and TH**~¢(v) cross only once in (1,&). More
concretely, there exists v* such that TH*?=¢(v) > TH*"*~¢(v), for v € (1,v*),

whereas TH!@¢(v) < TH*""¢(v), forv € (V*»lTlp)-
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8. Results

In this paper, we introduce several models for the communication of recent customers'
decisions to the strategic customers of a service system. Moreover, we present some
preliminary results for the customer strategic behavior in these models and compare it with

the corresponding behavior in the classical observable and unobservable models.

For the join-or-balk dilemma of strategic customers at an M/M/1 queue, it turns out that
this new type of information smooths the effective arrival process and is beneficial for the
social welfare in comparison to the unobservable model, in particular for intermediate

values of the service reward.

9. Conclusions

In systems where the information about the queue length cannot be communicated to the
customers, the provision of information about the last customer's decision has been shown
to be advantageous. This was outlined in this paper and presented in more detail in
Economou (2024).

The present paper suggests a variety of models that are based on the same idea, i.e.
informing customers regarding other customers’ decisions. The research effort should be
continued to clarify in more depth the implications of such types of information. In
particular, the following research questions seem important for extending the results:

e What is the effect of informing customers about recent customers’ decisions on the
customers’ utility, administrator’s profit and social welfare? Who benefits and who
loses from such type of information?

e Can the analysis be extended into more complex queueing models, for example
models with many servers and/or batch arrivals and departures?

e How can the analysis be carried out in the case of heterogeneous customers

(regarding their service value and waiting costs)?
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